As a beta emitter, samarium-153 (Sm-153) has been used in palliative cancer therapy. One of the widely employed methods to produce Sm-153 is by irradiating enriched Sm-152 target with thermal neutrons via 152Sm(n,γ)153Sm nuclear reaction. In this work, Sm-153 radioisotope production is theoretically proposed using secondary fast neutrons bombarded to enriched Eu-153 target via 153Eu(n,p)153Sm nuclear reaction. The secondary fast neutron flux calculation was performed using the PHITS 3.20 code, in which, in the simulation, a 10-MeV proton beam was bombarded to a 0.3 mm thick primary titanium (Ti) target to generate secondary fast neutrons. The fast neutrons were then bombarded to the enriched Eu-153 target to produce Sm-153. Based on the PHITS simulation results, the total fast neutron flux generated from the 10-MeV proton bombarded Ti target was 2.16x1011 n/cm2s. With such a neutron flux, Sm-135 radioactivity yield was estimated to be 3.19 kBq/µAh. The most possible beta-emitting radioisotope impurity generated during Sm-153 production was Eu-154, whereas the most possible stable isotope that could be produced during Sm-153 production was Sm-152. This theoretical study highlights that secondary fast neutrons as a result of 10-MeV proton bombardment can be used to produce Sm-153 radioisotope.

1.
F.
Szelecsenyi
,
A.
Fenyvesi
,
G. F.
Steyn
,
K.
Brezovcsik
,
Z.
Kovacs
, and
B.
Biro
,
J. Radioanal. Nucl. Chem.
318
,
491
496
(
2018
).
2.
H.
Suryanto
and
I.
Kambali
,
Atom Indonesia
44
,
81
87
(
2018
).
3.
L.
Auditore
,
E.
Amato
, and
S.
Baldari
,
Appl. Radiat. Isot.
122
,
229
234
(
2017
).
4.
D.
Alloni
and
M.
Prata
,
Appl. Radiat. Isot.
128C
,
204
209
(
2017
).
5.
X.
Zang
,
Y.
Zhang
,
F.
Ma
,
Y.
Ju
,
L.
Chen
,
H.
Zhang
,
Y.
Li
,
B.
Wan
,
J.
Wang
, and
H.
Ge
, Eur.
Phys. J. A
51
,
106
113
(
2015
).
6.
R.
Gallicchio
 et al.,
Metab.
32
,
434
440
(
2014
).
8.
N.
Ramamoorthy
,
P.
Saraswathy
,
M. K.
Das
,
K. S.
Mehra
, and
M.
Ananthakrishnan
,
Nucl. Med. Commun.
23
,
83
89
(
2002
).
9.
Y. H.
Wong
,
H. Y.
Tan
,
A.
Kasbollah
,
B. J. J.
Abdullah
,
R. U.
Acharya
, and
C. H.
Yeong
,
World. J. Exp. Med.
10
,
10
25
(
2020
).
10.
S.
Hashimoto
and
T.
Sato
,
J. Nucl. Sci. Technol.
56
,
345
354
(
2019
).
11.
T.
Sato
 et al.,,
J. Nucl. Sci. Technol.
55
,
684
690
(
2018
).
12.
Y.
Iwamoto
 et al.,
J. Nucl. Sci. Technol.
54
,
617
635
(
2017
).
13.
I. R.
Febrianto
,
Syarip
,
Silakhuddin
,
K.
Wibowo
, and
Suharni
, “
Neutronic analysis of DECY-13 cyclotron target system as a neutron source for SAMOP
,” in
International Conference on Nuclear Capacity Building, Education, Research and Applications (I-Concern19)-2019, Journal of Physics: Conference Series 1663 (IOP Publishing
,
Bristol
,
2020
), p.
012016
.
14.
I. R.
Febrianto
,
P. I.
Wahyono
, and
Suharni
,
J.
Teknologi Reaktor Nuklir Tri Dasa Mega
22
,
17
22
(
2020
).
15.
D.
Kaku
,
T.
Ye
, and
Y.
Watanabe
, “
Neutronics analysis of the International Fusion Materials Irradiation Facility using the PHITS code “ in
International Conference on Nuclear Data for Science and Technology- 2007, (EDP Sciences, Les Ulis
,
2008
), p.
259
.
16.
J. F.
Ziegler
and
J. P.
Biersack
,
Treatise on Heavy-ion Science
(
Springer
,
1985
).
17.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instr. Meth. Phys. Res. B
268,
1818
1823
(
2010
).
18.
A.J.
Koning
,
D.
Rochman
,
J.
Sublet
,
N.
Dzysiuk
,
M.
Fleming
, and
S.
van der Marck
,
Nucl. Data Sheets
155
,
1
55
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.