Klein-Gordon equation for Screened Manning-Rosen potential combined with Poschl-Teller potential and Kepler problem in hypersphere non-central potential was solved by hypergeometric method. Klein-Gordon equation was divided into a radial part, an angular part, and an azimuthal part by using a variable separation method. The radial part used Screened Manning-Rosen potential while the angular part used Poschl-Teller potential, and the azimuthal part used Kepler problem in hypersphere potential. The relativistic energy spectrum was calculated numerically. The value of the relativistic energy increases as the quantum number n and parameter potential increase. The wave function was expressed in hypergeometric equation term.

1.
Oluwadare
,
O. J.
, &
Oyewumi
,
K. J.
Scattering states solutions of Klein–Gordon equation with three physically solvable potential models
.
Chinese Journal of Physics
,
55
(
6
), (
2017
),
2422
2435
. doi:
2.
Rao
,
N. A.
, &
Kagali
,
B. A.
Spinless particles in Screened Coulomb potential
.
Physics Letters A
,
296
(
4-5
), (
2002
),
192
196
. doi:
3.
Dianawati
,
D. A.
,
Suparmi
,
A.
,
Cari
,
C.
,
Anggraini
,
D.
,
Ulfa
,
U.
,
Fitri
,
D. C.
, &
Mega
,
P.
Hypergeometric method for Klein-Gordon equation with trigonometric Pöschl-Teller and trigonometric Scarf II potentials
. (
2018
), doi:
4.
Ikot
,
A. N.
,
Awoga
,
O. A.
, &
Ita
,
B. I.
Exact Solutions of the Klein–Gordon Equation with Hylleraas Potential
.
Few-Body Systems
,
53
(
3-4
), (
2012
),
539
548
. doi:
5.
Elviyanti
,
I. L.
,
Suparmi
,
A.
,
Cari
,
C.
,
Nugraha
,
D. A.
, &
Pratiwi
,
B. N.
Solution of Klein Gordon equation for hyperbolic cotangent potential in the presence of a minimal length using Hypergeometric method
.
Journal of Physics: Conference Series
,
909
,
012023
. (
2017
), doi:
6.
ZHANG
Ai-Ping
and
QIANG
Wen-Chao
.
Exact Bound Solution of the Klein-Gordon Equation and the Dirac Equation with Rosen-Morsell Potential[J]
.
Chinese Physics C
,
31
(
11
): (
2007
),
1027
1031
.
7.
Abir
,
R.
,
Jamil
,
U.
,
Mustafa
,
M. G.
, &
Srivastava
,
D. K.
Heavy quark energy loss and D-mesons in RHIC and LHC energies
.
Physics Letters B
,
715
(
1-3
), (
2012
),
183
189
. doi:
8.
Hassanabadi
,
H.
,
Ikot
,
A. N.
, &
Zarrinkamar
,
S.
Exact Solution of Klein-Gordon with the Pöschl-Teller Double-Ring-Shaped Coulomb Potential
.
Acta Physica Polonica A
,
126
(
3
), (
2014
),
647
652
. doi:
9.
Cariñena
,
J. F.
,
Ranada
,
M. F.
, &
Santander
,
M.
Response to “ ‘Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2’ ” [
J. Math. Phys.
46, 052702 2005)]. Journal of Mathematical Physics,
46
(
11
),
114102
. (
2005
), doi:
10.
Isonguyo
,
C. N.
,
Okon
,
I. B.
,
Ikot
,
A. N.
, &
Hassanabadi
,
H.
Solution of Klein Gordon Equation for Some Diatomic Molecules with New Generalized Morse-like Potential Using SUSYQM
.
Bulletin of the Korean Chemical Society
,
35
(
12
), (
2014
),
3443
3446
. doi:
11.
Akpan
,
I. O.
,
Antia
,
A. D.
, &
Ikot
,
A. N.
Bound-State Solutions of the Klein-Gordon Equation with -Deformed Equal Scalar and Vector Eckart Potential Using a Newly Improved Approximation Scheme
.
ISRN High Energy Physics
,
2012
, (2012),
1
13
. doi:
12.
Ikot
,
A. N.
,
Lutfuoglu
,
B. C.
,
Ngwueke
,
M. I.
,
Udoh
,
M. E.
,
Zare
,
S.
, &
Hassanabadi
,
H.
Klein-Gordon equation particles in exponential-type molecule potentials and their thermodynamic properties in D dimensions
.
The European Physical Journal Plus
,
131
(
12
). (
2016
), doi:
13.
Hitler
,
L.
,
Iserom
,
I. B.
,
Tchoua
,
P.
, &
Ettah
,
A. A.
Bound State Solutions of the Klein-Gordon Equation for the More General Exponential Screened Coulomb Potential Plus Yukawa (MGESCY) Potential Using Nikiforov-Uvarov Method
.
Journal of Physical Mathematics
,
09
(
01
). (
2018
), doi:
14.
Hassanabadi
,
H.
,
Zarrinkamar
,
S.
, &
Rahimov
,
H.
Approximate Solution of D-Dimensional Klein—Gordon Equation with Hulthén-Type Potential via SUSYQM
.
Communications in Theoretical Physics
,
56
(
3
), (
2011
),
423
428
. doi:
15.
Hassan
,
H.
,
Hoda
,
Y. B.
, &
Lu
,
L.-L.
Approximate Analytical Solutions to the Generalized Pöschl—Teller Potential in D Dimensions
.
Chinese Physics Letters
,
29
(
2
),
020303
. (
2012
), doi:
16.
Elviyanti
,
I. L.
,
Pratiwi
,
B. N.
,
Suparmi
,
A.
, &
Cari
,
C.
The Application of Minimal Length in Klein-Gordon Equation with Hulthen Potential Using Asymptotic Iteration Method
.
Advances in Mathematical Physics
, (
2018
),
1
8
. doi:
17.
Suparmi
,
A.
,
Cari
,
C.
, &
Elviyanti
,
I. L.
Solution of Klein Gordon equation for trigonometric cotangent potential in the presence of a minimal length using Asymptotic Iteration Method
.
Journal of Physics: Conference Series
,
909
,
012003
. (
2017
), doi:
18.
Suparmi
,
A.
,
Cari
,
C.
, &
Elviyanti
,
I. L.
Analysis of Eigenvalue and Eigenfunction of Klein Gordon Equation Using Asymptotic Iteration Method for Separable Non-central Cylindrical Potential
.
Journal of Physics: Conference Series
,
1011
,
012086
. (
2018
), doi:
19.
Nugraha
,
D. A.
,
Suparmi
,
A.
, &
Cari
,
C.
Analytical solution of Klein Gordon equation Trigonometric Poschl-Teller potential using asymptotic iteration method
.
Journal of Theoretical and Applied Physics
,
1
(
1
), (
2017
),
42
. doi:
20.
Ihtiari
,
Suparmi
, Cari, &
Visty
Devi
.
Penyelesaian Persamaan Klein-Gordon untuk potensial non sentral Hylthen bagian radial dengan Polinomial Romanovski
.
Seminar Nasional 2nd Lontar physics Forum 2013.
(
2013
), ISBN: 978-602-8047-80-7.
21.
Suparmi
,
S.
,
Dianawati
,
D. A.
, &
Cari
,
C.
Solution of Q-Deformed D-Dimensional Klein-Gordon Equation Kratzer Potential using Hypergeometric Method
.
Jurnal Penelitian Fisika Dan Aplikasinya (JPFA)
,
9
(
2
), (
2019
),
163
. doi:
22.
Alhaidari
,
A. D.
,
Bahlouli
,
H.
, &
Al-Hasan
,
A.
Dirac and Klein–Gordon equations with equal scalar and vector potentials
.
Physics Letters A
,
349
(
1-4
), (
2006
),
87
97
. doi:
23.
Okorie
,
U. S.
,
Ikot
,
A. N.
,
Edet
,
C. O.
,
Rampho
,
G. J.
,
Sever
,
R.
, &
Akpan
,
I. O.
Solutions of the Klein Gordon equation with generalized hyperbolic potential in D-dimensions
.
Journal of Physics Communications
,
3
(
9
),
095015
. (
2019
), doi:
This content is only available via PDF.
You do not currently have access to this content.