Klein-Gordon equation for Screened Manning-Rosen potential combined with Poschl-Teller potential and Kepler problem in hypersphere non-central potential was solved by hypergeometric method. Klein-Gordon equation was divided into a radial part, an angular part, and an azimuthal part by using a variable separation method. The radial part used Screened Manning-Rosen potential while the angular part used Poschl-Teller potential, and the azimuthal part used Kepler problem in hypersphere potential. The relativistic energy spectrum was calculated numerically. The value of the relativistic energy increases as the quantum number n and parameter potential increase. The wave function was expressed in hypergeometric equation term.
REFERENCES
1.
Oluwadare
, O. J.
, & Oyewumi
, K. J.
Scattering states solutions of Klein–Gordon equation with three physically solvable potential models
. Chinese Journal of Physics
, 55
(6
), (2017
), 2422
–2435
. doi:2.
Rao
, N. A.
, & Kagali
, B. A.
Spinless particles in Screened Coulomb potential
. Physics Letters A
, 296
(4-5
), (2002
), 192
–196
. doi:3.
Dianawati
, D. A.
, Suparmi
, A.
, Cari
, C.
, Anggraini
, D.
, Ulfa
, U.
, Fitri
, D. C.
, & Mega
, P.
Hypergeometric method for Klein-Gordon equation with trigonometric Pöschl-Teller and trigonometric Scarf II potentials
. (2018
), doi:4.
Ikot
, A. N.
, Awoga
, O. A.
, & Ita
, B. I.
Exact Solutions of the Klein–Gordon Equation with Hylleraas Potential
. Few-Body Systems
, 53
(3-4
), (2012
), 539
–548
. doi:5.
Elviyanti
, I. L.
, Suparmi
, A.
, Cari
, C.
, Nugraha
, D. A.
, & Pratiwi
, B. N.
Solution of Klein Gordon equation for hyperbolic cotangent potential in the presence of a minimal length using Hypergeometric method
. Journal of Physics: Conference Series
, 909
, 012023
. (2017
), doi:6.
ZHANG
Ai-Ping
and QIANG
Wen-Chao
. Exact Bound Solution of the Klein-Gordon Equation and the Dirac Equation with Rosen-Morsell Potential[J]
. Chinese Physics C
, 31
(11
): (2007
), 1027
–1031
.7.
Abir
, R.
, Jamil
, U.
, Mustafa
, M. G.
, & Srivastava
, D. K.
Heavy quark energy loss and D-mesons in RHIC and LHC energies
. Physics Letters B
, 715
(1-3
), (2012
), 183
–189
. doi:8.
Hassanabadi
, H.
, Ikot
, A. N.
, & Zarrinkamar
, S.
Exact Solution of Klein-Gordon with the Pöschl-Teller Double-Ring-Shaped Coulomb Potential
. Acta Physica Polonica A
, 126
(3
), (2014
), 647
–652
. doi:9.
Cariñena
, J. F.
, Ranada
, M. F.
, & Santander
, M.
Response to “ ‘Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2’ ” [
J. Math. Phys.
46, 052702 2005)]. Journal of Mathematical Physics, 46
(11
), 114102
. (2005
), doi:10.
Isonguyo
, C. N.
, Okon
, I. B.
, Ikot
, A. N.
, & Hassanabadi
, H.
Solution of Klein Gordon Equation for Some Diatomic Molecules with New Generalized Morse-like Potential Using SUSYQM
. Bulletin of the Korean Chemical Society
, 35
(12
), (2014
), 3443
–3446
. doi:11.
Akpan
, I. O.
, Antia
, A. D.
, & Ikot
, A. N.
Bound-State Solutions of the Klein-Gordon Equation with -Deformed Equal Scalar and Vector Eckart Potential Using a Newly Improved Approximation Scheme
. ISRN High Energy Physics
, 2012
, (2012), 1
–13
. doi:12.
Ikot
, A. N.
, Lutfuoglu
, B. C.
, Ngwueke
, M. I.
, Udoh
, M. E.
, Zare
, S.
, & Hassanabadi
, H.
Klein-Gordon equation particles in exponential-type molecule potentials and their thermodynamic properties in D dimensions
. The European Physical Journal Plus
, 131
(12
). (2016
), doi:13.
Hitler
, L.
, Iserom
, I. B.
, Tchoua
, P.
, & Ettah
, A. A.
Bound State Solutions of the Klein-Gordon Equation for the More General Exponential Screened Coulomb Potential Plus Yukawa (MGESCY) Potential Using Nikiforov-Uvarov Method
. Journal of Physical Mathematics
, 09
(01
). (2018
), doi:14.
Hassanabadi
, H.
, Zarrinkamar
, S.
, & Rahimov
, H.
Approximate Solution of D-Dimensional Klein—Gordon Equation with Hulthén-Type Potential via SUSYQM
. Communications in Theoretical Physics
, 56
(3
), (2011
), 423
–428
. doi:15.
Hassan
, H.
, Hoda
, Y. B.
, & Lu
, L.-L.
Approximate Analytical Solutions to the Generalized Pöschl—Teller Potential in D Dimensions
. Chinese Physics Letters
, 29
(2
), 020303
. (2012
), doi:16.
Elviyanti
, I. L.
, Pratiwi
, B. N.
, Suparmi
, A.
, & Cari
, C.
The Application of Minimal Length in Klein-Gordon Equation with Hulthen Potential Using Asymptotic Iteration Method
. Advances in Mathematical Physics
, (2018
), 1
–8
. doi:17.
Suparmi
, A.
, Cari
, C.
, & Elviyanti
, I. L.
Solution of Klein Gordon equation for trigonometric cotangent potential in the presence of a minimal length using Asymptotic Iteration Method
. Journal of Physics: Conference Series
, 909
, 012003
. (2017
), doi:18.
Suparmi
, A.
, Cari
, C.
, & Elviyanti
, I. L.
Analysis of Eigenvalue and Eigenfunction of Klein Gordon Equation Using Asymptotic Iteration Method for Separable Non-central Cylindrical Potential
. Journal of Physics: Conference Series
, 1011
, 012086
. (2018
), doi:19.
Nugraha
, D. A.
, Suparmi
, A.
, & Cari
, C.
Analytical solution of Klein Gordon equation Trigonometric Poschl-Teller potential using asymptotic iteration method
. Journal of Theoretical and Applied Physics
, 1
(1
), (2017
), 42
. doi:20.
Ihtiari
, Suparmi
, Cari, & Visty
Devi
. Penyelesaian Persamaan Klein-Gordon untuk potensial non sentral Hylthen bagian radial dengan Polinomial Romanovski
. Seminar Nasional 2nd Lontar physics Forum 2013.
(2013
), ISBN: 978-602-8047-80-7.21.
Suparmi
, S.
, Dianawati
, D. A.
, & Cari
, C.
Solution of Q-Deformed D-Dimensional Klein-Gordon Equation Kratzer Potential using Hypergeometric Method
. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA)
, 9
(2
), (2019
), 163
. doi:22.
Alhaidari
, A. D.
, Bahlouli
, H.
, & Al-Hasan
, A.
Dirac and Klein–Gordon equations with equal scalar and vector potentials
. Physics Letters A
, 349
(1-4
), (2006
), 87
–97
. doi:23.
Okorie
, U. S.
, Ikot
, A. N.
, Edet
, C. O.
, Rampho
, G. J.
, Sever
, R.
, & Akpan
, I. O.
Solutions of the Klein Gordon equation with generalized hyperbolic potential in D-dimensions
. Journal of Physics Communications
, 3
(9
), 095015
. (2019
), doi:
This content is only available via PDF.
© 2023 Author(s).
2023
Author(s)
You do not currently have access to this content.