Consumer Price Index (CPI) is one of the economic indicators used to measure inflation. Badan Pusat Statistik (BPS) publishes a monthly CPI and inflation with a time lag of one working day. Policies based on the monthly inflation rate could be losing momentum as the events associated with inflation had occurred long before inflation or CPI was published. Therefore, it is necessary to calculate daily CPI to describe near real-time price changes. Nowcasting can overcome this issue by predicting daily inflation through predicting daily CPI. The calculation of daily CPI is done by entering daily data price of basic commodities in Sistem Informasi Ketersediaan dan Perkembangan Harga Bahan Pokok (SISKAPERBAPO), daily Jakarta Interbank Spot Dollar Rate (JISDOR) from Bank Indonesia, and daily Brent crude oil futures prices from Id Investing into a nowcasting model and validated by monthly CPI published by BPS. The nowcasting method used in this study is the Time Series Regression (TSR) and Support Vector Regression (SVR) applied to predict daily CPI nowcasts in East Java Province. The performance comparison between TSR and SVR is evaluated based on the Root Mean Square Error (RMSE), symmetric Mean Absolute Percentage Error (sMAPE), and Mean Absolute Deviation (MAD). SVR-Polynomial is the best method for predicting daily CPI.

1.
Suseno
, &
Aisyah
,
S.
,
Inflation,
(
Pusat Pendidikan dan Studi Kebansentralan (PPSK) BI
,
Jakarta
,
2009
).
2.
Eksiandayani
,
S.
,
Suhartono
, &
Prastyo
,
D. D.
, “
Hybrid ARIMAX-NN Model For Forecasting Inflation
”, in
International Conference on Science, Technology and Humanity
(
2015
), pp.
181
187
.
3.
Nizar
,
M. A.
, “
The Impact of World Oil Price Fluctuations on the Indonesian Economy
”, in
Buletin Ilmiah Litbang Perdagangan Vol.
6
No.
2
(
2012
), pp.
189
210
.
4.
Sutawijaya
,
A.
, &
Zulfahmi
, “
The Influence of Economic Factors on Inflation in Indonesia
”, in
Jurnal Organisasi dan Manajemen
Volume
8
Nomor
2
(
2012
), pp.
85
101
.
5.
Saputra
,
K.
, &
Nugroho
, “
Analysis of Factors Affecting Inflation in Indonesia 2007-2012
”, in
Diponegoro Journal of Economics
Volume
3
No.
1
(
2014
), pp.
1
15
.
6.
Darma
,
D. C.
,
Pusriadi
,
T.
, &
Hakim
,
Y. P.
, “
The Impact of Rising Food Commodity Prices on the Inflation Rate in Indonesia
”, in
Seminar Nasional dan Call For Paper: Manajemen, Akuntansi dan Perbankan
(
2018
), pp.
1048
1074
.
7.
Sundoro
,
H. S.
, “
The Influence of Food Commodity Prices and Gasoline on Inflation Rates During Jokowi's Administration
”, in
E-Jurnal Ekonomi dan Bisnis Universitas Udayana
(
2021
), pp.
73
82
.
8.
Amrin
, “
Data Mining with Multiple Linear Regression for Forecasting Inflation Rate
”, in
Jurnal Techno Nusa Mandiri
Vol.
XIII
, No.
1
(Maret 2016), pp.
74
79
.
9.
Sumantri
,
F.
, &
Latifah
,
U.
, “
Factors Affecting Consumer Price Index
”, in
Jurnal Sekretari dan Manajemen Widya Cipta
Volume
3
No.
1
(Maret
2019
), pp.
25
34
.
10.
Khatimi
,
H.
,
Alkaff
,
M.
, &
Najipah
,
D. R.
, “
Implementation of Support Vector Regression (SVR) for National Monthly Inflation Forecasting
”, in
JTIULM
- Volume
02
, Nomor
2
(Desember
2017
), pp.
29
34
.
11.
Dewi
,
K.
,
Adikara
,
P. P.
, &
Adinugroho
,
S.
, “
Prediction of Consumer Price Index (CPI) for Housing, Water, Electricity, Gas and Fuel Groups Using the Support Vector Regression Method
”, in
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer
Vol.
2
, No.
10
, (Oktober 2018), pp.
3856
3862
.
12.
Budiastuti
,
R.
,
Daily Consumer Price Index Prediction using Cloud Computing Based Support Vector Regression. Thesis.
(
Institut Teknologi Sepuluh November
,
Surabaya
,
2017
).
13.
Banbura
,
M.
,
Giannone
,
D.
, &
Reichlin
,
L.
, “
Nowcasting
”, in
ECB Working Paper Series No. 1275
(
2010
), pp.
1
38
.
14.
Makridakis
,
S.
, &
Hibon
,
M.
, “
The M3-Competition: results, conclusions, and implications
”, in
International Journal of Forecasting
Vol.
16
, (
2000
), pp.
451
476
.
15.
Ding
,
Z.
, “Application of Support Vector Machine Regression in Stock Price Forecasting”, in
Zhu
M.
(eds)
Business, Economics, Financial Sciences, and Management. Advances in Intelligent and Soft Computing, vol
143
(
Springer, Berlin, Heidelberg
,
2012
), pp.
359
365
.
16.
Riyani
,
D.
,
Prastyo
,
D. D.
, &
Suhartono
, “
Input Selection in Support Vector Regression for Univariate Time Series Forecasting
”, in
AIP Conference Proceeding
2194
,
020105
, (
2019
), pp.
1
7
.
17.
Montgomery
,
D.
,
Jennings
,
C.
, &
Kulahci
,
M.
,
Introduction to Time Series Analysis and Forecasting
, (
John Wiley& Sons
,
New Jersey
,
2008
).
18.
Lee
,
M. H.
,
Suhartono
, &
Hamzah
,
N. A.
, “
Calendar Variation Model Based On ARIMAX for Forecasting Sales Data with Ramadhan Effect
”, in
Proceedings of the Regional Conference on Statistical Sciences 2010 RCSS'10
, pp.
349
361
.
This content is only available via PDF.
You do not currently have access to this content.