In 2018 the Area Sample Framework Survey (ASF) was formed, which was carried out by BPS Statistics to calculate rice harvested area and improve food crop data. The combination of satellite data and official data is an innovation that needs to be done to overcome a limitation, especially in the Sampling ASF carried out by BPS Statistics, so that the success of combining official data and big data will make suggestions for adding samples to the non-sample ASF Survey for data estimation harvest area is more accurate. Rotation Forest is a method that is often used and excels in classification with continuous data predictors. Multitemporal remote sensing using Landsat-8 satellite imagery was launched in 2013 with a recording period every 16 days. The basic features produced on the Landsat-8 satellite include bands 1 to 7, EVI, NDVI, NDWI, and NDBI indexes that can be used for prediction using the ensemble rotfor method. OVO method is better than the OVA in the case of multiclass rotfor rice growth phase detection using Landsat-8 satellite imagery. The best model formed is the RotFor MultiClass OVO model with a sensitivity value of 0.88, specificity 0.96, accuracy 0.87, MCC 0.83 and Cohen Kappa Index 0.83.

1.
A.
Zezza
and
L.
Tasciotti
, “
Urban agriculture, poverty, and food security: Empirical evidence from a sample of developing countries
,”
Food Policy
, vol.
35
, no.
4
, pp.
265
273
, (
2010
).
2.
S.
Dhahri
and
A.
Omri
, “
Foreign capital towards SDGs 1 & 2—Ending Poverty and hunger: The role of agricultural production
,”
Struct. Chang. Econ. Dyn.
, vol.
53
, pp.
208
221
, (
2020
).
3.
A.
Rahman
and
E.
Octaviani
, “
ANALISIS PRODUKTIVITAS TENAGA KERJA SEKTOR PERTANIAN DAN KEMISKINAN DI INDONESIA
,” in
Seminar Nasional Variansi (Venue Artikulasi-Riset, Inovasi, Resonansi-Teori, dan Aplikasi Statistika), (2021)
,
vol
.
2020
, pp.
39
48
.
4.
A. A.
Aji
,
A.
Satria
, and
B.
Hariono
, “
Strategi pengembangan agribisnis komoditas padi dalam meningkatkan ketahanan pangan Kabupaten Jember
,”
J. Manaj. Agribisnis
, vol.
11
, no.
1
, pp.
60
67
, (
2014
).
5.
A. H.
Marsuhandi
,
A. M.
Soleh
,
H.
Wijayanto
, and
D. D.
Domiri
, “Pemanfaatan ensemble learning dan penginderaan jauh untuk pengklasifikasian jenis lahan padi,” in
Seminar Nasional Official Statistics, 2019
,
vol
. (
2019
), no.
1
, pp.
188
195
.
6.
D. W.
Triscowati
,
B.
Sartono
,
A.
Kurnia
,
D.
Dirgahayu
, and
A. W.
Wijayanto
, “
CLASSIFICATION OF RICE-PLANT GROWTH PHASE USING SUPERVISED RANDOM FOREST METHOD BASED ON LANDSAT-8 MULTITEMPORAL DATA
,”
Int. J. Remote Sens. Earth Sci.
, vol.
16
, no.
2
, pp.
187
196
, (
2020
).
7.
I. M.
Parsa
and
D.
Dirgahayu
, “
Multitemporal Landsat data to quick mapping of paddy field based on statistical parameters of vegetation index (case study: Tanggamus, Lampung
),”
Int. J. Remote Sens. Earth Sci.
, vol.
10
, no.
1
, (
2013
).
8.
J.
Dean
, Big data, data mining, and machine learning: value creation for business leaders and practitioners.
John Wiley & Sons
, (
2014
).
9.
M.
Hidayat
, “Pendugaan Pertumbuhan Umur Padi Dengan Pemodelan Klasifikasi Multiclass Rotation Forest Pada Citra Landsat-8,”
Institut Pertanian Bogor
, (
2020
).
10.
J. J.
Rodriguez
,
L. I.
Kuncheva
, and
C. J.
Alonso
, “
Rotation forest: A new classifier ensemble method
,”
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.
28
, no.
10
, pp.
1619
1630
, (
2006
).
11.
M. N.
Adnan
and
M. Z.
Islam
, “
One-vs-all binarization technique in the context of random forest
,” in
Proceedings of the european symposium on artificial neural networks, computational intelligence and machine learning
, (
2015
),
pp
.
385
390
.
12.
M.
Galar
,
A.
Fernández
,
E.
Barrenechea
,
H.
Bustince
, and
F.
Herrera
, “
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
,”
Pattern Recognit.
, vol.
44
, no.
8
, pp.
1761
1776
, (
2011
).
13.
L.
Zhou
,
Q.
Wang
, and
H.
Fujita
, “
One versus one multi-class classification fusion using optimizing decision directed acyclic graph for predicting listing status of companies
,”
Inf. Fusion
, vol.
36
, pp.
80
89
, (
2017
).
14.
E.
Hüllermeier
and
S.
Vanderlooy
, “
Combining predictions in pairwise classification: An optimal adaptive voting strategy and its relation to weighted voting
,”
Pattern Recognit.
, vol.
43
, no.
1
, pp.
128
142
, (
2010
).
15.
A.
Sen
,
M. M.
Islam
,
K.
Murase
, and
X.
Yao
, “
Binarization with boosting and oversampling for multiclass classification
,”
IEEE Trans. Cybern.
, vol.
46
, no.
5
, pp.
1078
1091
, (
2015
).
16.
J.
Fawcett
, “
Criteria for evaluation of theory
,”
Nurs. Sci. Q.
, vol.
18
, no.
2
, pp.
131
135
, (
2005
).
17.
A. K.
Santra
and
C. J.
Christy
, “
Genetic algorithm and confusion matrix for document clustering
,”
Int. J. Comput. Sci. Issues
, vol.
9
, no.
1
, p. 322, (
2012
).
18.
G.
Jurman
,
S.
Riccadonna
, and
C.
Furlanello
, “
A comparison of MCC and CEN error measures in multi-class prediction
,”
PLoS One
, vol.
7
, no.
8
, p. e41882, (
2012
).
19.
K.
Abhishek
and
G.
Hamarneh
, “
Matthews Correlation Coefficient Loss for Deep Convolutional Networks: Application to Skin Lesion Segmentation
,” arXiv Prepr. arXiv2010.13454,
2020
.
This content is only available via PDF.
You do not currently have access to this content.