Although vaccine development is being carried out quickly, but until now, there is no effective antiviral drug for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19. Therefore, this study explores the possibilities offered by quercetin derivatives with glucose groups found in the okra plant as a prospective antiviral drug to fight viruses. Previous research showed that okra plants containing Quercetin derivative compounds with glucose groups are an alternative treatment for diabetes mellitus. On the one hand, patients with COVID-19 who have comorbidities, such as hypertension or diabetes mellitus, are bound to foster a more thoughtful course and movement of the illness. A total of 10 quercetin derivative compounds with glucose groups were tested through molecular docking against SARS-CoV-2 Main Protease (Mpro) using AutoDock Vina. The result of our study showed that quercetin 3-O-diglucoside had the lowest binding free energy of -9.5 kcal/mol, followed by quercetin 3-O-rutinoside, quercetin 3-galactoside were -9.1 and -8.9 kcal/mol, respectively. Both screened compounds had lower binding free energy than the positive controls, which valued -8.2 kcal/mol (Lopinavir) and -7.8 kcal/mol (Ritonavir). The potential inhibitor of SARS-CoV-2 Mpro by the three compounds from this research can be a starting point in the process of developing COVID-19 therapeutic drugs from natural compounds. However, further exploration in research is vital to examine their possible restorative use.

1.
D.
Cucinotta
and
M.
Vanelli
, “
WHO Declares COVID-19 a Pandemic
,”
Acta Biomed
, vol.
91
, pp.
157
160
,
2020
, doi: .
2.
N.
Chen
 et al., “
Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study
,”
Lancet
, vol.
395
, no.
10223
, pp.
507
513
, Feb.
2020
, doi: .
3.
L.-L.
Ren
 et al., “
Identification of a novel coronavirus causing severe pneumonia in human
,”
Chin. Med. J. (Engl).
, vol.
133
, no.
9
, pp.
1015
1024
, May
2020
, doi: .
4.
D. Z. M. D. W. W. X. L. M. D. B. Y. M. S. J. S. X. Z. B. H. W. S. R. L. M. D. P. N. F. Z. X. M. D. W. W. X. G. W. G. F. G. W. T. Na
Zhu
, “
A Novel Coronavirus from Patients with Pneumonia in China, 2019
,”
N. Engl. J. Med.
,
2020
, doi: .
5.
I.
Abdelli
 et al., “
In silico evaluation of phenolic compounds as inhibitors of A-amylase and A-glucosidase
,”
J. Biomol. Struct. Dyn.
,
2020
, doi: .
6.
A.
Basit
,
T.
Ali
, and
S. Ur
Rehman
, “
Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and potent COVID-19 therapeutic agent Truncated human angiotensin converting enzyme 2; a potential inhibitor of SARS-CoV-2 spike glycoprotein and poten
,”
J. Biomol. Struct. Dyn.
,
2020
, doi: .
7.
A. A.
Elfiky
, “
SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective
,”
J. Biomol. Struct. Dyn.
,
2020
, doi: .
8.
H. K.
Siddiqi
and
M. R.
Mehra
, “
COVID-19 illness in native and immunosuppressed states: A clinical– therapeutic staging proposal
,”
Journal of Heart and Lung Transplantation
, vol.
39
, no.
5
. Elsevier USA, pp.
405
407
, May 01,
2020
, doi: .
9.
P.
Sinha
 et al., “
Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: a prospective observational study
,”
Lancet Respir. Med.
, vol.
8
, no.
12
, pp.
1209
1218
, Dec.
2020
, doi: .
10.
H. M.
Wahedi
,
S.
Ahmad
, &
Sumra
,
W.
Abbasi
,
H. Mustatab
Wahedi
, and
S. W.
Abbasi
, “
Stilbene-based natural compounds as promising drug candidates against COVID-19
,”
J. Biomol. Struct. Dyn.
,
2020
, doi: .
11.
S.
Boopathi
,
A. B.
Poma
, and
P.
Kolandaivel
, “
Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment
,”
J. Biomol. Struct. Dyn.
,
2020
, doi: .
12.
S. C.
Baker
 et al., “
The Genome Sequence of the SARS-Associated Coronavirus
,”
Coronavirology Partners Gr.
,
2003
, doi: .
13.
C.
Thiel
 et al., “
A New Type of Congenital Disorders of Glycosylation (CDG-Ii) Provides New Insights into the Early Steps of Dolichol-linked Oligosaccharide Biosynthesis
*,”
J. Biol. Chem.
, vol.
278
, no.
25
, pp.
22498
22505
,
2003
, doi: .
14.
K. R. A. B. S. C. B. A. D. M. Valerie
Grum-Tokars
, “
Evaluating the 3C-like protease activity of SARS-Coronavirus: recommendations for standardized assays for drug discovery
,”
Virus Research
,
2008
. https://reader.elsevier.com/reader/sd/pii/S016817020700055X?token=A087CFF8223ABF89AB3E436C28 F2FE8707A29755CE0E87E50AFC72949958E4EBE36C347082752A9BCEBCDDD45477FF16 (accessed Jan. 22,
2021
).
15.
B. H.
Harcourt
 et al., “
Identification of Severe Acute Respiratory Syndrome Coronavirus Replicase Products and Characterization of Papain-Like Protease Activity
,”
J. Virol.
, vol.
78
, no.
24
, pp.
13600
13612
, Dec.
2004
, doi: .
16.
J. E.
Blanchard
 et al., “
High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase
,”
Chem. Biol.
, vol.
11
, no.
10
, pp.
1445
1453
, Oct.
2004
, doi: .
17.
W.
Dai
 et al., “
Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease
,”
2020
. [Online]. Available: http://science.sciencemag.org/.
18.
J.
Yang
 et al., “
Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: A systematic review and meta-analysis
,”
Int. J. Infect. Dis.
, vol.
94
, pp.
91
95
, May
2020
, doi: .
19.
I.
Osman
 et al., “
The urgency of utilizing COVID-19 biospecimens for research in the heart of the global pandemic
,”
J. Transl. Med.
, vol.
18
, no.
1
, Jun.
2020
, doi: .
20.
K.
Anand
,
J.
Ziebuhr
,
P.
Wadhwani
,
J. R.
Mesters
, and
R.
Hilgenfeld
, “
Coronavirus Main Proteinase (3CL pro) Structure: Basis for Design of Anti-SARS Drugs
,”
2003
. [Online]. Available: www.sciencemag.org/cgi/content/full/300/5626/1758/.
21.
S.
Kim
,
S. E.
Peterson
,
M.
Jasin
, and
S.
Keeney
, “Mechanisms of germ line genome instability,”
Seminars in Cell and Developmental Biology
, vol.
54
.
Academic Press
, pp.
177
187
, Jun. 01,
2016
, doi: .
22.
B. J. O. I. F. O. H. A. I. A. Akinwunmi O.
Adeoye
, “
Journal of Biomolecular Structure and Dynamics
,” May, doi: .
23.
S.
Khan
 et al.,
“Erratum: emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2
(
Biology and therapeutic options
(
2020
)
58
:
5
(
827
836
)Doi: ),”
S.
Khan
 et al.,
Journal of Clinical Microbiology
, vol.
58
, no.
8
. American Society for Microbiology, pp.
1297
1317
, Aug. 01,
2020
, doi: .
24.
S.
Khaerunnisa
,
H.
Kurniawan
,
R.
Awaluddin
,
S.
Suhartati
, and
S.
Soetjipto
, “
Potential Inhibitor of COVID-19 Main Protease (M pro) from Several Medicinal Plant Compounds by Molecular Docking Study
,”
Preprints
, Mar.
2020
, doi: .
25.
A. V. A.
David
,
R.
Arulmoli
, and
S.
Parasuraman
, “
Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid
,”
Pharmacogn. Rev.
, vol.
10
, no.
20
, p.
84
, Jul.
2016
, doi: .
26.
T. Thanh Hanh
Nguyen
 et al., “
Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris
,”
Biotechnol Lett
, vol.
34
, pp.
831
838
,
2012
, doi: .
27.
J.-Y.
Park
 et al., “
Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors
,”
J. Enzyme Inhib. Med. Chem.
, vol.
32
, no.
1
, pp.
504
512
,
2017
, doi: .
28.
V. T.
Chow
 et al., “
Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19
),”
Front. Immunol. | www.frontiersin.org
, vol.
1
, p.
1451
,
2020
, doi: .
29.
L.
Chen
 et al., “
Binding interaction of quercetin-3-p-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure-activity relationship studies reveal salient pharmacophore features
,”
Bioorganic Med. Chem.
, vol.
14
, no.
24
, pp.
8295
8306
, Dec.
2006
, doi: .
30.
S.
Kim
 et al., “
PubChem Substance and Compound databases
,”
Nucleic Acids Res.
, vol.
44
,
2016
, doi: .
31.
C. A.
Lipinski
, “
Lead-and drug-like compounds: The rule-of-five revolution
,”
Drug Discovery Today: Technologies
, vol.
1
, no.
4
. Elsevier, pp.
337
341
, Dec. 01,
2004
, doi: .
32.
H. M.
Berman
 et al., “
The protein data bank
,”
Acta Crystallogr. Sect. D Biol. Crystallogr.
, vol.
58
, no.
6
I, pp.
899
907
,
2002
, doi: .
33.
Z.
Jin
 et al., “
Structure of M pro from SARS-CoV-2 and discovery of its inhibitors
,”
Nature
, vol.
582
,
2020
, doi: .
34.
D. W.
Kneller
,
J.
Agniswamy
,
A. K.
Ghosh
, and
I. T.
Weber
, “
Potent antiviral HIV-1 protease inhibitor combats highly drug resistant mutant PR20
,”
Biochem. Biophys. Res. Commun.
, vol.
519
, no.
1
, pp.
61
66
, Oct.
2019
, doi: .
35.
Y.
Shi
 et al., “
Identification of two antiviral inhibitors targeting 3C-like serine/3C-like protease of porcine reproductive and respiratory syndrome virus and porcine epidemic diarrhea virus
,”
Vet. Microbiol.
, vol.
213
, pp.
114
122
, Jan.
2018
, doi: .
36.
S.
Pawar
 et al., “
Structural studies of antiviral inhibitor with HIV-1 protease bearing drug resistant substitutions of V32I, I47V and V82I
,”
Biochem. Biophys. Res. Commun.
, vol.
514
, no.
3
, pp.
974
978
, Jun.
2019
, doi: .
37.
J. G.
Taylor
 et al., “
Discovery of the pan-genotypic hepatitis C virus NS3/4A protease inhibitor voxilaprevir (GS-9857): A component of Vosevi
®,”
Bioorganic Med. Chem. Lett.
, vol.
29
, no.
16
, pp.
2428
2436
, Aug.
2019
, doi: .
38.
R. M.
Wypych
,
S. R.
LaPlante
,
P. W.
White
, and
S. F.
Martin
, “
Structure-thermodynamics-relationships of hepatitis C viral NS3 protease inhibitors
,”
Eur. J. Med. Chem.
, vol.
192
, p.
112195
, Apr. w2020, doi: .
39.
C.
Wu
 et al., “
Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods
,”
Acta Pharm. Sin. B
, vol.
10
, no.
5
, pp.
766
788
, May
2020
, doi: .
40.
R.
Yu
,
L.
Chen
,
R.
Lan
,
R.
Shen
, and
P.
Li
, “
Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking
,”
Int. J. Antimicrob. Agents
, vol.
56
, no.
2
, p.
106012
, Aug.
2020
, doi: .
41.
Y. M.
Báez-Santos
,
S. E. St.
John
, and
A. D.
Mesecar
, “
The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds
,”
Antiviral Research
, vol.
115
. Elsevier B.V., pp.
21
38
, Mar. 01,
2015
, doi: .
This content is only available via PDF.
You do not currently have access to this content.