Current tissue engineering bioreactors do not allow for real-time remote monitoring of the engineered tissues. Meanwhile, the tissue culture in a bioreactor may occur for days and weeks, in which errors and breakdowns of the bioreactor are unfavorable. In this study, an internet-of-things (IoT) architecture was integrated into a bioreactor to enable real-time remote monitoring, featuring a PID-controlled thermal module. Six different PID control configurations were examined for maintaining the thermal perseverance in a bioreactor. The results of the measured temperature were parallelly delivered to a dedicated website using a Message Queuing Telemetry Transport protocol. All PID control configurations were able to maintain the temperature at 37°C, and the integration of the IoT system was successfully completed. The user was able to monitor the value of inside chamber temperature on the website in real-time.

1.
R.
Birla
,
Introduction to Tissue Engineering: Applications and Challenges
(
2014
).
2.
S.S.
Hinman
,
R.
Kim
,
Y.
Wang
,
K.S.
Phillips
,
P.J.
Attayek
, and
N.L.
Allbritton
,
Current Opinion in Biomedical Engineering
13
,
94
(
2020
).
3.
F.J.
O’Brien
,
Materials Today
14
,
88
(
2011
).
4.
C.
Mason
,
D.A.
Brindley
,
E.J.
Culme-Seymour
, and
N.L.
Davie
,
Regenerative Medicine
6
,
265
(
2011
).
5.
A.
Jain
and
R.
Bansal
,
J Pharm Bioall Sci
7
,
188
(
2015
).
6.
M.H.
Nadhif
,
Y.
Whulanza
,
J.
Istiyanto
, and
B.M.
Bachtiar
,
JBBBE
30
,
24
(
2017
).
7.
J.
Paez-Mayorga
,
G.
Hernández-Vargas
,
G.U.
Ruiz-Esparza
,
H.M.N.
Iqbal
,
X.
Wang
,
Y.S.
Zhang
,
R. Parra-
Saldivar
, and
A.
Khademhosseini
,
Adv. Healthcare Mater.
8
,
1701504
(
2019
).
8.
J.
Costa
,
M.
Ghilardi
,
V.
Mamone
,
V.
Ferrari
,
J.J.C.
Busfield
,
A.
Ahluwalia
, and
F.
Carpi
,
Front. Bioeng. Biotechnol.
8
,
22
(
2020
).
9.
M.H.
Nadhif
,
H.
Assyarify
,
A.K.
Waafi
, and
Y.
Whulanza
,
IJTech
11
,
1066
(
2020
).
10.
Y.
Whulanza
,
D.S.
Widyaratih
,
J.
Istiyanto
, and
G.
Kiswanto
,
ARPN Journal of Engineering and Applied Sciences
9
,
2064
(
2014
).
11.
M.H.
Nadhif
,
A.P.
Hadiputra
,
M.S.
Utomo
, and
Y.
Whulanza
,
IJTech
10
,
1626
(
2019
).
12.
H.
Okumura
,
Y.
Udagawa
,
K.
Yamada
,
K.
Tsukasaki
,
Y.
Azuma
, and
S.
Nozawa
,
Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences
55
,
135
(
1979
).
13.
Y.
Reissis
,
E.
García-Gareta
,
M.
Korda
,
G.W.
Blunn
, and
J.
Hua
,
Stem Cell Res Ther
4
,
139
(
2013
).
14.
S.
Zhu
,
J.
Wang
,
B.
Xie
,
Z.
Luo
,
X.
Lin
, and
D.J.
Liao
,
PLoS ONE
10
,
e0137042
(
2015
).
15.
B.
Wang
,
Z.
Wang
,
T.
Chen
, and
X.
Zhao
,
Front. Bioeng. Biotechnol.
8
,
7
(
2020
).
16.
L.G.
Villa-Diaz
,
A.M.
Ross
,
J.
Lahann
, and
P.H.
Krebsbach
,
STEM CELLS
31
,
1
(
2013
).
17.
T.
Kitagawa
,
T.
Yamaoka
,
R.
Iwase
, and
A.
Murakami
,
Biotechnol. Bioeng.
93
,
947
(
2006
).
18.
Y.A.
Petrenko
,
A.Y.
Petrenko
,
I.
Martin
, and
D.
Wendt
,
Cryobiology
76
,
150
(
2017
).
19.
I.G.
Beşkardeş
,
G.
Aydın
,
Ş.
Bektaş
,
A.
Cengiz
, and
M.
Gümüşderelioğlu
,
Biochemical Engineering Journal
132
,
100
(
2018
).
20.
D.
Egger
,
M.
Fischer
,
A.
Clementi
,
V.
Ribitsch
,
J.
Hansmann
, and
C.
Kasper
,
Bioengineering
4
,
51
(
2017
).
21.
L.
Yuan
,
Y.
Guan
,
D.
Ma
, and
H.
Du
,
Neural Regen Res
10
,
1516
(
2015
).
22.
C.
Meinert
,
K.
Schrobback
,
D.W.
Hutmacher
, and
T.J.
Klein
,
Sci Rep
7
,
16997
(
2017
).
23.
J.
Schmid
,
S.
Schwarz
,
R.
Meier-Staude
,
S.
Sudhop
,
H.
Clausen-Schaumann
,
M.
Schieker
, and
R.
Huber
,
Tissue Engineering Part C: Methods
24
,
585
(
2018
).
24.
A.
Rahmat
,
I.
Jaya
,
T.
Hestirianoto
,
D.
Jusadi
, and
M.
Kawaroe
,
Omni.Akua
16
,
53
(
2020
).
25.
M.S.
Utomo
,
M.H.
Nadhif
,
G.F.E.
Bayani
, and
Y.
Whulanza
,
AIP Conference Proceedings
2344
,
050017
(
2021
).
26.
A.
Top
,
C.
Haydaroğlu
, and
M.
Gökbulut
,
EJT
7
,
146
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.