Wearable sensors are devices used in the diagnostic process for real-time health monitoring systems. Types of sensors are generally based on physical sensors and chemical sensors. However, the types of wearable sensors that are largely commercialized are limited to physical sensors. Some diagnostic processes generally use the blood collecting method to determine a patient’s condition. However, this method can cause adverse effects such as infection, pain, and bruising for some patients. Chemical-based wearable sensors are capable of detecting metabolic conditions in the body and can be an alternative to the existing method. Based on an approach using alternative analytes, sweat is the most frequently used because it is highly accessible and proceeds good parameters compared to the blood. Several studies related to wearable sensors using sweat have been done to increase convenience during the sampling process. Electrochemical, biosensor, and hybrid with several sampling methods, including microfluidic system, absorbent material, superhydrophobic-super hydrophilic surface, and iontophoresis, can be used for wearable sensor analysis method. Over the past decade, the characteristics of wearable sensors (i.e., selectivity, sensitivity, stability, and response time), textile materials, and biofuel cell technology for self-powered sensor development have also increased. From these classifications, it can be concluded that the method which is highly feasible to be developed is electrochemical wearable sensors that combine microfluidic and iontophoresis systems. The system is also expected to have stretchable material and is equipped with an integrated biofuel cell system that has the potential to be developed in our upcoming research topic.

1.
N.
Mboi
,
I. Murty
Surbakti
,
I.
Trihandini
,
I.
Elyazar
,
K. Houston
Smith
,
P. Bahjuri
Ali
,
S.
Kosen
,
K.
Flemons
,
S.E.
Ray
,
J.
Cao
,
S.D.
Glenn
,
M.K.
Miller-Petrie
,
M.D.
Mooney
,
J.L.
Ried
,
D. Nur Anggraini
Ningrum
,
F.
Idris
,
K.N.
Siregar
,
P.
Harimurti
,
R.S.
Bernstein
,
T.
Pangestu
,
Y.
Sidharta
,
M.
Naghavi
,
C.J.L.
Murray
, and
S.I.
Hay
,
The Lancet
(
Elsevier Ltd
.,
2018
), pp.
581
591
.
2.
A.M.V.
Mohan
,
V.
Rajendran
,
R.K.
Mishra
, and
M.
Jayaraman
,
TrAC
(
Elsevier Ltd
,
2020
), pp.
1
17
.
3.
W.
Dang
,
L.
Manjakkal
,
W.T.
Navaraj
,
L.
Lorenzelli
,
V.
Vinciguerra
, and
R.
Dahiya
,
Biosensors and Bioelectronics
(
Elsevier Ltd
,
2018
), pp.
192
202
.
4.
J.
Heikenfeld
,
A.
Jajack
,
B.
Feldman
,
S.W.
Granger
,
S.
Gaitonde
,
G.
Begtrup
, and
B.A.
Katchman
,
Nature Biotechnology
(
Springer Nature
,
2019
), pp.
407
419
.
5.
Y.J.
Hong
,
H.
Lee
,
J.
Kim
,
M.
Lee
,
H.J.
Choi
,
T.
Hyeon
, and
D.H.
Kim
,
Advanced Functional Materials
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
2018
), pp.
1
12
.
6.
B.
Camcı
,
C.
Ersoy
, and
H.
Kaynak
,
Journal of Biomedical Informatics
(
Elsevier Ltd
.,
2019
), pp.
1
14
.
7.
S.
Bagyalakshmi
,
A.
Sivakami
, and
K.S.
Balamurugan
,
Obesity Medicine
(
Elsevier Ltd
,
2020
), pp.
1
6
.
8.
X.
Wei
,
M.
Zhu
,
J.
Li
,
L.
Liu
,
J.
Yu
,
Z.
Li
, and
B.
Ding
,
Nano Energy
(
Elsevier Ltd
.,
2021
), pp.
1
8
.
9.
Z.
Xu
,
Y.
Liu
,
I.
Williams
,
Y.
Li
,
F.
Qian
,
L.
Wang
,
Y.
Lei
, and
B.
Li
,
Applied Energy
(
Elsevier Ltd
.,
2017
), pp.
71
80
.
10.
Y.
Yang
and
W.
Gao
,
Chemical Society Reviews
(
The Royal Society of Chemistry
,
2019
), pp.
1465
1491
.
11.
A.
Romeo
,
A.
Moya
,
T. S.
Leung
,
G.
Gabriel
,
R.
Villa
, and
S.
Sánchez
,
Applied Materials Today
(
Elsevier Ltd
.,
2018
), pp.
133
141
.
12.
P.
Kassal
,
M. D.
Steinberg
, and
I. M.
Steinberg
,
Sensors and Actuators, B: Chemical
(
Elsevier Ltd
.,
2018
), pp.
228
245
.
13.
J.R.
Sempionatto
,
L.C.
Brazaca
,
L.
García-Carmona
,
G.
Bolat
,
A.S.
Campbell
,
A.
Martin
,
G.
Tang
,
R.
Shah
,
R.K.
Mishra
,
J.
Kim
,
V.
Zucolotto
,
A.
Escarpa
, and
J.
Wang
,
Biosensors and Bioelectronics
(
Elsevier Ltd
,
2019
), pp.
161
170
.
14.
C.
Liu
,
Y.
Sheng
,
Y.
Sun
,
J.
Feng
,
S.
Wang
,
J.
Zhang
,
J.
Xu
, and
D.
Jiang
.
Biosensors and Bioelectronics
(
Elsevier Ltd
.,
2015
), pp.
455
461
.
15.
T.
Arakawa
,
Y.
Kuroki
,
H.
Nitta
,
K.
Toma
,
K.
Mitsubayasi
,
S.
Takeuchi
,
T.
Sekita
, and
S.
Minakuchi
.
ICST
(
Elsevier Ltd
.,
2016
), pp.
46
49
.
16.
M. Haji
Mohammadi
,
S.
Mulder
,
P.
Khashayar
,
A.
Kalbasi
,
M.
Azimzadeh
, and
A. Reza
Aref
,
Microchemical Journal
(
Elsevier Ltd
,
2021
), pp.
1
13
.
17.
D.
Li
,
Z.
Pu
,
W.
Liang
,
T.
Liu
,
R.
Wang
,
H.
Yu
, and
K.
Xu
.
Measurement: Journal of the International Measurement Confederation
(
Elsevier Ltd
.,
2015
), pp.
215
221
.
18.
S.A.
Ventura
,
J.
Heikenfeld
,
T.
Brooks
,
L.
Esfandiari
,
S.
Boyce
,
Y.
Park
, and
G.B.
Kasting
,
Bioelectrochemistry
(
Elsevier Ltd
.,
2017
), pp.
54
60
.
19.
Y.
Yao
,
J.
Chen
,
Y.
Guo
,
T.
Lv
,
Z.
Chen
,
N.
Li
,
S.
Cao
,
B.
Chen
, and
T.
Chen
,
Biosensors and Bioelectronics
(
Elsevier Ltd
,
2021
), pp.
1
7
.
20.
Y.
Yu
,
H.Y.Y.
Nyein
,
W.
Gao
, and
A.
Javey
,
Advanced Materials
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
2020
), pp.
1
25
.
21.
E.N.
Marieb
and
S.M.
Keller
, "Skin and Body Membranes," in
Essentials of Human Anatomy and Physiology
(
Pearson Education Inc
.,
2018
), pp.
109
130
.
22.
P.
Pirovano
,
M.
Dorrian
,
A.
Shinde
,
A.
Donohoe
,
A.J.
Brady
,
N.M.
Moyna
,
G.
Wallace
,
D.
Diamond
, and
M.
McCaul
,
Talanta
(
Elsevier Ltd
,
2020
), pp.
121
145
.
23.
R.
Reghunath
,
K.
devi
, and
K.K.
Singh
,
Nano-Structures and Nano-Objects
(
Elsevier Ltd
.,
2021
), pp.
1
18
.
24.
R.C.
Reid
and
I.
Mahbub
,
Current Opinion in Electrochemistry
(
Elsevier Ltd
.,
2020
), pp.
55
62
.
25.
J. S.
Nah
,
S.
Barman
,
M.
Zahed
,
M.
Sharifuzzaman
,
H.
Yoon
,
C.
Park
,
S.
Yoon
,
S.
Zhang
, and
J. Y.
Park
.
Sensors and Actuators, B: Chemical
(
Elsevier Ltd
.,
2021
), pp.
1
9
.
26.
M.
Pali
,
B.
Jagannath
,
K. C.
Lin
,
S.
Upasham
,
D.
Sankhalab
,
S.
Upashama
,
S.
Muthukumar
, and
S.
Prasad
.
Electrochimica Acta
(
Elsevier Ltd
.,
2021
), pp.
1
9
.
27.
C.
Cheng
,
X.
Li
,
G.
Xu
,
Y.
Lu
,
S. S.
Low
,
G.
Liu
,
L.
Zhu
,
C.
Li
, and
Q.
Liu
.
Biosensors and Bioelectronics
(
Elsevier Ltd
.,
2021
) pp.
1
9
.
28.
Y.
Wang
,
X.
Wang
,
W.
Lu
,
Q.
Yuan
,
Y.
Zheng
, and
B.
Yao
.
Talanta
(
Elsevier Ltd
.
2019
), pp.
86
92
.
29.
W.
Lipińska
,
K.
Siuzdak
,
J.
Karczewski
,
A.
Dołęga
, and
K.
Grochowska
.
Sensors and Actuators, B: Chemical
(
Elsevier Ltd
.,
2021
), pp.
1
9
.
30.
J.
Yu
,
P.
Zhang
,
T.
Chen
,
Q.
Lv
,
L.
Gao
,
B.
Liu
,
J.
Duan
,
Z.
Wu
, and
J.
Li
.
JCIS Open
(
Elsevier Ltd
.,
2021
), pp.
1
8
.
31.
Y.K.
Lee
,
K.I.
Jang
,
Y.
Ma
,
A.
Koh
,
H.
Chen
,
H.N.
Jung
,
Y.
Kim
,
J.W.
Kwak
,
L.
Wang
,
Y.
Xue
,
Y.
Yang
,
W.
Tian
,
Y.
Jiang
,
Y.
Zhang
,
X.
Feng
,
Y.
Huang
, and
J.A.
Rogers
,
Advanced Functional Materials
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
2017
), pp.
1
8
.
32.
H.
Lee
,
C.
Song
,
Y.S.
Hong
,
M.S.
Kim
,
H.R.
Cho
,
T.
Kang
,
K.
Shin
,
S.H.
Choi
,
T.
Hyeon
, and
D.H.
Kim
,
Science Advances
(
AAAS
,
2017
), pp.
1
9
.
33.
B.
Dai
,
K.
Li
,
L.
Shi
,
X.
Wan
,
X.
Liu
,
F.
Zhang
,
L.
Jiang
, and
S.
Wang
,
Advanced Materials
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
2019
), pp.
1
7
.
34.
Q.
An
,
S.
Gan
,
J.
Xu
,
Y.
Bao
,
T.
Wu
,
H.
Kong
,
L.
Zhong
,
Y.
Ma
,
Z.
Song
, and
L.
Niu
,
Electrochemistry Communications
(
Elsevier Ltd
.,
2019
), pp.
1
6
.
35.
J.
Min
,
J.R.
Sempionatto
,
H.
Teymourian
,
J.
Wang
, and
W.
Gao
,
Biosensors and Bioelectronics
(
Elsevier Ltd
.,
2021
), pp.
1
16
.
36.
C.C.
Tseng
,
C. Te
Kung
,
R.F.
Chen
,
M.H.
Tsai
,
H.R.
Chao
,
Y.N.
Wang
, and
L.M.
Fu
,
Sensors and Actuators
(
Elsevier Ltd
.,
B: Chemical
,
2021
), pp.
1
14
.
37.
R.M.
Torrente-Rodríguez
,
J.
Tu
,
Y.
Yang
,
J.
Min
,
M.
Wang
,
Y.
Song
,
Y.
Yu
,
C.
Xu
,
C.
Ye
,
W.W.
IsHak
, and
W.
Gao
,
Matter
(
Elsevier Ltd
.,
2020
), pp.
921
937
.
This content is only available via PDF.
You do not currently have access to this content.