This study proposes a new method in an electroencephalograph (EEG)-based Brain-Computer Interface (BCI) that can directly utilize brain signals to control external devices. The motor Imagery (MI) signal, which contains an image of a certain limb movement, is generally used in BCI. It does not need direct movements. The implementation of MI-EEG signal into BCI still experiences major issues because the patterns obtained for each recording can vary from one another even though they have the same type of motion. In this study, we utilized the Wavelet Packet Transform (WPT) method to decompose the EEG signal into specific sub-band frequencies and Common Spatial Pattern (CSP) as a spatial filter to increase the spatial resolution of the EEG signal. The Convolutional Neural Network (CNN) was subsequently selected for training from the classifier. Next, the results of the training were used to classify the movements of the given MI-EEG. We evaluated the model using dataset 2a from Brain-Computer Interface Competition (BCIC) IV. The results of this method showed the increase in the accuracy of 32% and in Kappa up to 0.42 and the decrease in Root Mean Square Error (RMSE) up to 1.21, compared with only using CNN as the classifier. These results showed fairly good performance compared to other methods used previously in dataset 2a from BCIC IV.

1.
J.
Yang
,
S.
Yao
, and
J.
Wang
, “
Deep Fusion Feature Learning Network for MI-EEG Classification
,”
IEEE Access
, vol.
6
, no.
c
, pp.
79050
79059
,
2018
.
2.
Y.
Liu
 et al., “
Motor Imagery Based Teleoperation of a Dual-arm Robot Performing Manipulation Tasks
,”
IEEE Trans. Cogn. Dev. Syst.
, vol.
8920
, no.
c
,
2018
.
3.
M.
Higger
 et al., “
Recursive Bayesian Coding for BCIs
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
25
, no.
6
, pp.
704
714
,
2017
.
4.
A.
Hekmatmanesh
,
R. Mohammadi
Asl
,
H.
Wu
, and
H.
Handroos
, “
EEG Control of a Bionic Hand With Imagination Based on Chaotic Approximation of Largest Lyapunov Exponent: A Single Trial BCI Application Study
,”
IEEE Access
, vol.
7
, pp.
105041
105053
,
2019
.
5.
J.
Meng
,
T.
Streitz
,
N.
Gulachek
,
D.
Suma
, and
B.
He
, “
Three-dimensional brain-computer interface control through simultaneous overt spatial attentional and motor imagery tasks
,”
IEEE Trans. Biomed. Eng.
, vol.
65
, no.
11
, pp.
2417
2427
,
2018
.
6.
R.
Zhang
 et al., “
Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
24
, no.
1
, pp.
128
139
,
2016
.
7.
S.
He
 et al., “
EEG-And EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
28
, no.
2
, pp.
519
530
,
2020
.
8.
D.
Rathee
,
H.
Raza
,
G.
Prasad
, and
H.
Cecotti
, “
Current source density estimation enhances the performance of motor-imagery-related brain–computer interface
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
25
, no.
12
, pp.
2461
2471
,
2017
.
9.
Y.
Zhang
,
C. S.
Nam
,
G.
Zhou
,
J.
Jin
,
X.
Wang
, and
A.
Cichocki
, “
Temporally constrained sparse group spatial patterns for motor imagery BCI
,”
IEEE Trans. Cybern.
, vol.
49
, no.
9
, pp.
3322
3332
,
2019
.
10.
L. W.
Ko
,
O.
Komarov
, and
S. C.
Lin
, “
Enhancing the Hybrid BCI Performance with the Common Frequency Pattern in Dual-Channel EEG
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
27
, no.
7
, pp.
1360
1369
,
2019
.
11.
T.
Nguyen
,
I.
Hettiarachchi
,
A.
Khatami
,
L.
Gordon-Brown
,
C. P.
Lim
, and
S.
Nahavandi
, “
Classification of Multi-Class BCI Data by Common Spatial Pattern and Fuzzy System
,”
IEEE Access
, vol.
6
, no.
c
, pp.
27873
27884
,
2018
.
12.
Y.
Jiao
 et al., “
Sparse Group Representation Model for Motor Imagery EEG Classification
,”
IEEE J. Biomed. Heal. Informatics
, vol.
23
, no.
2
, pp.
631
641
,
2019
.
13.
S.
Selim
,
M. M.
Tantawi
,
H. A.
Shedeed
, and
A.
Badr
, “
A CSP\AM-BA-SVM Approach for Motor Imagery BCI System
,”
IEEE Access
, vol.
6
, no.
c
, pp.
49192
49208
,
2018
.
14.
S.
Huang
,
Y.
Chen
,
T.
Wang
, and
T.
Ma
, “
Spectrum-Weighted Tensor Discriminant Analysis for Motor Imagery-Based BCI
,”
IEEE Access
, vol.
8
, pp.
93749
93759
,
2020
.
15.
M.
Barsotti
,
D.
Leonardis
,
N.
Vanello
,
M.
Bergamasco
, and
A.
Frisoli
, “
Effects of Continuous Kinaesthetic Feedback Based on Tendon Vibration on Motor Imagery BCI Performance
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
26
, no.
1
, pp.
105
114
,
2018
.
16.
M.
Song
and
J.
Kim
, “
A Paradigm to Enhance Motor Imagery Using Rubber Hand Illusion Induced by Visuo-Tactile Stimulus
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
27
, no.
3
, pp.
477
486
,
2019
.
17.
A.
Khalaf
,
E.
Sejdic
, and
M.
Akcakaya
, “
Common spatial pattern and wavelet decomposition for motor imagery EEG-fTCD brain-computer interface
,”
J. Neurosci. Methods
, vol.
320
, no. March, pp.
98
106
,
2019
.
18.
V.
Mishuhina
and
X.
Jiang
, “
Feature Weighting and Regularization of Common Spatial Patterns in EEG-Based Motor Imagery BCI
,”
IEEE Signal Process. Lett.
, vol.
25
, no.
6
, pp.
783
787
,
2018
.
19.
X.
Wu
,
B.
Zhou
,
Z.
Lv
, and
C.
Zhang
, “
To Explore the Potentials of Independent Component Analysis in Brain-Computer Interface of Motor Imagery
,”
IEEE J. Biomed. Heal. Informatics
, vol.
24
, no.
3
, pp.
775
787
,
2020
.
20.
M. T.
Sadiq
 et al., “
Motor Imagery EEG Signals Decoding by Multivariate Empirical Wavelet Transform-Based Framework for Robust Brain-Computer Interfaces
,”
IEEE Access
, vol.
7
, pp.
171431
171451
,
2019
.
21.
V. P.
Oikonomou
,
S.
Nikolopoulos
, and
I.
Kompatsiaris
, “
Robust motor imagery classification using sparse representations and grouping structures
,”
IEEE Access
, vol.
8
, pp.
98572
98583
,
2020
.
22.
N.
Robinson
,
A. P.
Vinod
,
K. K.
Ang
,
K. P.
Tee
, and
C. T.
Guan
, “
EEG-based classification of fast and slow hand movements using wavelet-CSP algorithm
,”
IEEE Trans. Biomed. Eng.
, vol.
60
, no.
8
, pp.
2123
2132
,
2013
.
23.
R.
Alazrai
,
M.
Abuhijleh
,
H.
Alwanni
, and
M. I.
Daoud
, “
A Deep Learning Framework for Decoding Motor Imagery Tasks of the Same Hand Using EEG Signals
,”
IEEE Access
, vol.
7
, pp.
109612
109627
,
2019
.
24.
L.
Cheng
,
D.
Li
,
X.
Li
, and
S.
Yu
, “
The Optimal Wavelet Basis Function Selection in Feature Extraction of Motor Imagery Electroencephalogram Based on Wavelet Packet Transformation
,”
IEEE Access
, vol.
7
, no.
Cc
, pp.
174465
174481
,
2019
.
25.
M.
Grosse-Wentrup
and
M.
Buss
, “
Multiclass common spatial patterns and information theoretic feature extraction
,”
IEEE Trans. Biomed. Eng.
, vol.
55
, no.
8
, pp.
1991
2000
,
2008
.
26.
M.
Tangermann
 et al., “
Review of the BCI competition IV
,”
Front. Neurosci.
, vol.
6
, no. JULY, pp.
1
31
,
2012
.
27.
K. K.
Ang
,
Z. Y.
Chin
,
H.
Zhang
, and
C.
Guan
, “
Filter Bank Common Spatial Pattern (FBCSP) in brain-computer interface
,”
Proc. Int. Jt. Conf. Neural Networks
, pp.
2390
2397
,
2008
.
28.
J.
Meng
,
G.
Liu
,
G.
Huang
, and
X.
Zhu
, “
Automated selecting subset of channels based on CSP in motor imagery brain-computer interface system
,”
2009 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2009
, no. Grant 50525517, pp.
2290
2294
,
2009
.
29.
D.
Coyle
,
A.
Satti
,
G.
Prasad
, and
T. M.
McGinnity
, “
Neural time-series prediction preprocessing meets common spatial patterns in a brain-computer interface
,”
Proc. 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS’08 - Personalized Healthc. through Technol.
, vol.
44
, no.
0
, pp.
2626
2629
,
2008
.
30.
S.
Saha
,
K. I. U.
Ahmed
,
R.
Mostafa
,
L.
Hadjileontiadis
, and
A.
Khandoker
, “
Evidence of Variabilities in EEG Dynamics during Motor Imagery-Based Multiclass Brain-Computer Interface
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
26
, no.
2
, pp.
371
382
,
2018
.
This content is only available via PDF.
You do not currently have access to this content.