Dengue hemorrhagic fever (DHF) is an infectious disease caused by the dengue virus. This disease mostly affects children and adults, and also the number of sufferers and the extent of this disease are increasing. In grouping patient data based on the parameters of the symptoms of dengue fever, we will use the clustering method. In this study, a comparison of two clustering algorithms, namely K-Means and K-Medoids, uses a distance measure, namely Manhattan Distance, in both algorithms to determine the most optimal algorithm for grouping dengue patient data. The results of clustering carried out with a total of 3 k in the K-means clustering algorithm have members, namely in cluster 0 there are 32 members, cluster 1 there are 15 members, and cluster 2 there are 26 members. While the K-Medoids clustering algorithm has members, namely in cluster 0 there are 46 members, cluster 1 there are 24 members, and cluster 2 there are 3 members. Based on the results of the cluster obtained, the K-Medoids algorithm has a placement error in the data to 27, 34, 48, and 70 to the right cluster. While in the K-Means algorithm there is no error in the placement of data in the cluster. The results of the cluster analysis performed based on the Silhouette Coefficient value on the dengue patient data resulted that the K-Means algorithm was the optimal clustering method with the highest Silhouette Coefficient value of 0.25362003217634904 compared to the K-Medoids method of 0.1821645521976126. So, it can be concluded that the clustering method with the K-Means algorithm has a good cluster quality compared to the K-Medoids algorithm.

1.
Kementerian Kesehatan
RI
.
Journal of Vector Ecology.
31
,
1
. pp.
71
78
(
2018
).
2.
MENTERI KESEHATAN REPUBLIK INDONESIA
, “
PERATURAN MENTERI KESEHATAN REPUBLIK INDONESIA NOMOR 75 TAHUN 2014
.”
2014
.
3.
S.
Riama
and
Chafid
, “
Algorithma K-Means Clustering Strategi Pemasaran Penerimaan Mahasisswa Baru Universitas Satya Negara Indondesia [Algorithma K-Means Clustering Strategy Marketing Admission Universitas Satya Negara Indonesia]
,”
Semin. Nas. Cendekiawan ke
4
, no.
2
, pp.
685
690
,
2018
, [Online]. Available: https://journal.ubm.ac.id/index.php/alu/article/view/1367.
4.
E.
Irawan
,
S. P.
Siregar
,
I. S.
Damanik
, and
I. S.
Saragih
, “
Implementasi Algoritma K-Medoids untuk Pengelompokkan Sebaran Mahasiswa Baru
”,
5
, pp.
275
281
(
2020
).
5.
A.
Aditya
,
I.
Jovian
, and
B. N.
Sari
.
J. Media Inform. Budidarma.
4
,
1
, p.
51
(
2020
). doi: .
6.
M. L.
Sibuea
and
A.
Safta
.
Jurteksi.
4
,
1, pp. p85–92
(
2017
). doi: .
7.
S.
Nurlaela
,
A.
Primajaya
, and
T. N.
Padilah
.
INFORMaTIKa.
12
,
2
, p.
56
(
2020
). doi: .
8.
Y. H.
Susanti
and
E.
Widodo
, “
Perbandingan K-Means dan K-Medoids Clustering terhadap Kelayakan Puskesmas di DIY Tahun 2015
”,
1
,
1
, pp.
116
122
(
2017
).
9.
D. I. P
,
N.
Imani
,
T.
Shafira
,
L.
Kurnia
,
E.
Rusnita
, and
E.
Widodo
, “
Analisis Perbandingan Metode Single Lingkage Dan K-Means Clustering (Studi Kasus: Kasus Demam Berdarah Dengue (DBD) Di Provinsi Jawa Tengah Tahun 2015
)”,
Semin. Nas. Teknol. Inf. dan Multimed.
2018
, pp.
1
6
,
2018
.
10.
D.
Marlina
,
N.
Lina
,
A.
Fernando
, and
A.
Ramadhan
.
J. CoreIT J. Has. Penelit. Ilmu Komput. dan Teknol. Inf.
4
,
2, p. 64
(
2018
). doi: .
11.
D. A. I. C.
Dewi
and
D. A. K.
Pramita
, “
Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali
,”
Matrix J. Manaj. Teknol. Dan Inform.
,
9
,
3
, pp.
102
109
(
2019
). doi: .
12.
Yuliyanti
,
S. Al-Zulfa
Nas
,
I. Jauhari
Muhas
, and
E.
Firmansyah
, “
Perbandingan metode pendekatan manhattan distance dengan euclidian distance pada implementasi pengenalan aksara jawa dengan menggunakan algoritma k-nearest neighbor
.”
13.
S. M.
Hutabarat
and
A.
Sindar
.
J. Nas. Komputasi dan Teknol. Inf.
2
,
2
, p.
126
(
2019). doi
: .
14.
Y.
Mardi
.
J. Edik Inform.
2
,
2
, pp.
213
219
(
2017
).
15.
D. T.
Larose
,
Discovering Knowledge in Data: An Introduction to Data mining
.
Wiley Interscience
,
2005
.
16.
S.
Sindi
,
W. R. O.
Ningse
,
I. A.
Sihombing
,
F. Ilmi R.H.
Zer
, and
D.
Hartama
.
Jti (Jurnal Teknol. Informasi)
.
4
,
1
, pp.
166
173
(
2020
).
17.
I.
Kamila
,
U.
Khairunnisa
, and
M.
Mustakim
.
J. Ilm. Rekayasa dan Manaj. Sist. Inf.
5
,
1
, p.
119
(
2019). doi
: .
18.
B. M.
Metisen
and
H. L.
Sari
.
J. Media Infotama.
11
,
2
, pp.
110
118
(
2015
).
19.
S.
Andayani
, “
Formation of clusters in Knowledge Discovery in Databases by Algorithm K-Means
”,
SEMNAS Mat. Dan Pendidik. Mat. 2007
,
2007
.
20.
P.
Alkhairi
and
A. P.
Windarto
, “
Penerapan KMeans Cluster Pada Daerah Potensi Pertanian Karet Produktif di Sumatera Utara
”, pp.
762
767
,
2019
.
21.
W.
Dhuhita
.
J. Inform. Darmajaya.
15
,
2
, pp.
160
174
(
2015
).
22.
Nicolaus
,
E.
Sulistianingsih
, and
H.
Perdana
, “
Penentuan jumlah cluster optimal pada median linkage dengan indeks validitas silhouette
,”
Bul. Ilm. Math. Stat. dan Ter.
05
,
2
, pp.
97
102
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.