Carbon quantum dots (CQDs) is the new type of quantum dots (QDs) or nanoparticles with passivated surface having zero dimensions with size less than 10 nm. The main focus of this review paper is to emphasize on the utilizations and applications which CQDs possess due to their magnificent properties including high thermal stability, good conductivity, strong photoluminescence, biocompatibility, high crystallization, non-toxicity and many more. The readers will come to know about the following applications in this outlook. Strong photoluminescence of CQDs which further helps in multicolor bioimaging and detections. The application of heteroatom doped CQDs as a chemical and biosensor for sensing NO2 gas, to detect heavy metal atoms present like iron, lead and for spermine detection. The hybrid of Bi2O3 - CQDs for lithium-ion battery as this hybrid greatly increases efficiency and storage capacity. F and Cl doped CQDs show suitable anti-oxidant and pro-oxidant activity to use them for bioimaging. Mushroom derived CQDs for fighting against breast cancer cells and bacteria like Klebsilla pneumonia. N doped CQDs for photochemotherapy as it is best suited for enhancing diagnostic, therapeutic and fluorescence imaging property. Also, the types of challenges and difficulties faced in the research of nanoparticles before the development of CQDs are examined in this present work. Nanoparticle is the area where a lot of research has been done and there are many more to come in future specially for CQDs because due to its excellent properties, the attention of the hosts has been attracted towards it.

1.
Xu
X
,
Ray
R
,
Gu
Y
,
Ploehn
HJ
,
Gearheart
L
,
Raker
K
, et al.
Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments
.
Journal of the American Chemical Society.
2004
;
126
(
40
):
12736
7
.
2.
Zhao
HX
,
Liu
LQ
,
De Liu
Z
,
Wang
Y
,
Zhao
XJ
,
Huang
CZ
.
Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots
.
Chem Commun.
2011
;
47
(
9
):
2604
6
.
3.
Ye
R
,
Xiang
C
,
Lin
J
,
Peng
Z
,
Huang
K
,
Yan
Z
, et al.
Coal as an abundant source of graphene quantum dots
.
Nature communications.
2013
;
4
(
1
):
1
7
.
4.
Cao
L
,
Wang
X
,
Meziani
MJ
,
Lu
F
,
Wang
H
,
Luo
PG
, et al.
Carbon dots for multiphoton bioimaging
.
Journal of the American Chemical Society.
2007
;
129
(
37
):
11318
9
.
5.
Wang
X
,
Qu
K
,
Xu
B
,
Ren
J
,
Qu
X.
Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents
.
J Mater Chem.
2011
;
21
(
8
):
2445
50
.
6.
Ge
J
,
Jia
Q
,
Liu
W
,
Guo
L
,
Liu
Q
,
Lan
M
, et al.
Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice
.
Adv Mater.
2015
;
27
(
28
):
4169
77
.
7.
Li
Z
,
Ruckenstein
E.
Water-soluble poly (acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels
.
Nano Lett.
2004
;
4
(
8
):
1463
7
.
8.
Huang
W
,
Fernando
S
,
Allard
LF
,
Sun
Y-P.
Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly (ethylene glycol) in different functionalization reactions
.
Nano Lett.
2003
;
3
(
4
):
565
8
.
9.
Sun
Y-P
,
Zhou
B
,
Lin
Y
,
Wang
W
,
Fernando
KS
,
Pathak
P
, et al.
Quantum-sized carbon dots for bright and colorful photoluminescence
.
Journal of the American Chemical Society.
2006
;
128
(
24
):
7756
7
.
10.
Liu
J
,
Li
R
,
Yang
B.
Carbon dots: A new type of carbon-based nanomaterial with wide applications
.
ACS Central Science.
2020
;
6
(
12
):
2179
95
.
11.
Wang
R
,
Li
G
,
Dong
Y
,
Chi
Y
,
Chen
G.
Carbon quantum dot-functionalized aerogels for NO2 gas sensing
.
Anal Chem.
2013
;
85
(
17
):
8065
9
.
12.
Fu
Y
,
Wu
S
,
Zhou
H
,
Zhao
S
,
Lan
M
,
Huang
J
, et al.
Carbon dots and a CdTe quantum dot hybrid-based fluorometric probe for spermine detection
.
Industrial & Engineering Chemistry Research.
2020
;
59
(
4
):
1723
9
.
13.
Dornelles
AS
,
Garcia
VA
,
de Lima
MN
,
Vedana
G
,
Alcalde
LA
,
Bogo
MR
, et al.
mRNA expression of proteins involved in iron homeostasis in brain regions is altered by age and by iron overloading in the neonatal period
.
Neurochem Res.
2010
;
35
(
4
):
564
71
.
14.
Lv
P
,
Yao
Y
,
Zhou
H
,
Zhang
J
,
Pang
Z
,
Ao
K
, et al.
Synthesis of novel nitrogen-doped carbon dots for highly selective detection of iron ion
.
Nanotechnology.
2017
;
28
(
16
):
165502
.
15.
Kalaiyarasan
G
,
Joseph
J
,
Kumar
P.
Phosphorus-doped carbon quantum dots as fluorometric probes for iron detection
.
ACS omega.
2020
;
5
(
35
):
22278
88
.
16.
Gao
Y
,
Jiao
Y
,
Zhang
H
,
Lu
W
,
Liu
Y
,
Han
H
, et al.
One-step synthesis of a dual-emitting carbon dot-based ratiometric fluorescent probe for the visual assay of Pb2+ and PPi and development of a paper sensor
.
Journal of Materials Chemistry B.
2019
;
7
(
36
):
5502
9
.
17.
Kumari
B
,
Kumari
R
,
Das
P.
Visual detection of G-quadruplex with mushroom derived highly fluorescent carbon quantum dots
.
J Pharm Biomed Anal.
2018
;
157
:
137
44
.
18.
Rabe
DIA
,
Mohammed
OO
,
Dong
X
,
Patel
AK
,
Overton
CM
,
Tang
Y
, et al.
Carbon dots for highly effective photodynamic inactivation of multidrug-resistant bacteria
.
Materials Advances.
2020
;
1
(
3
):
321
5
.
19.
Zuo
G
,
Xie
A
,
Pan
X
,
Su
T
,
Li
J
,
Dong
W.
Fluorine-doped cationic carbon dots for efficient gene delivery
.
ACS Applied Nano Materials.
2018
;
1
(
5
):
2376
85
.
20.
Wang
L
,
Li
Y
,
Wang
Y
,
Kong
W
,
Lu
Q
,
Liu
X
, et al.
Chlorine-doped graphene quantum dots with enhanced anti-and pro-oxidant properties
.
ACS applied materials & interfaces.
2019
;
11
(
24
):
21822
9
.
21.
Markovic
ZM
,
Labudova
M
,
Danko
M
,
Matijasevic
D
,
Micusik
M
,
Nadazdy
V
, et al.
Highly efficient antioxidant F-and Cl-doped carbon quantum dots for bioimaging
.
ACS Sustainable Chemistry & Engineering.
2020
;
8
(
43
):
16327
38
.
22.
Mansur
AA
,
Caires
AJ
,
Carvalho
SM
,
Capanema
NS
,
Carvalho
IC
,
Mansur
HS
.
Dual-functional supramolecular nanohybrids of quantum dot/biopolymer/chemotherapeutic drug for bioimaging and killing brain cancer cells in vitro
.
Colloids and Surfaces B: Biointerfaces.
2019
;
184
:
110507
.
23.
Zhang
M
,
Wang
W
,
Zhou
N
,
Yuan
P
,
Su
Y
,
Shao
M
, et al.
Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating.
Carbon
.
2017
;
118
:
752
64
.
24.
Li
S
,
Su
W
,
Wu
H
,
Yuan
T
,
Yuan
C
,
Liu
J
, et al.
Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids
.
Nature biomedical engineering.
2020
;
4
(
7
):
704
16
.
25.
Samimi
S
,
Ardestani
MS
,
Dorkoosh
FA
.
Preparation of carbon quantum dots-quinic acid for drug delivery of gemcitabine to breast cancer cells
.
Journal of Drug Delivery Science and Technology.
2021
;
61
:
102287
.
26.
Gao
G
,
Jiang
Y-W
,
Jia
H-R
,
Yang
J
,
Wu
F-G.
On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots
.
Carbon.
2018
;
134
:
232
43
.
27.
Bao
W
,
Ma
H
,
Wang
N
,
He
Z.
pH-sensitive carbon quantum dots− doxorubicin nanoparticles for tumor cellular targeted drug delivery
.
Polym Adv Technol.
2019
;
30
(
11
):
2664
73
.
28.
Mazumdar
A
,
Haddad
Y
,
Milosavljevic
V
,
Michalkova
H
,
Guran
R
,
Bhowmick
S
, et al.
Peptide-carbon quantum dots conjugate, derived from human retinoic acid receptor responder protein 2, against antibiotic-resistant gram positive and gram negative pathogenic bacteria
.
Nanomaterials.
2020
;
10
(
2
):
325
.
29.
Prasad
KS
,
Shruthi
G
,
Shivamallu C. One-pot synthesis of aqueous carbon quantum dots using bibenzoimidazolyl derivative and their antitumor activity against breast cancer cell lines. Inorg Chem Commun
.
2019
;
101
:
11
5
.
30.
Boobalan
T
,
Sethupathi
M
,
Sengottuvelan
N
,
Kumar
P
,
Balaji
P
,
Gulyás
B
, et al.
Mushroom-derived carbon dots for toxic metal ion detection and as antibacterial and anticancer agents
.
ACS Applied Nano Materials.
2020
;
3
(
6
):
5910
9
.
31.
Jain
M
,
Nilsson
R
,
Sharma
S
,
Madhusudhan
N
,
Kitami
T
,
Souza
AL
, et al.
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation
.
Science.
2012
;
336
(
6084
):
1040
4
.
32.
Melancon
MP
,
Zhou
M
,
Li
C.
Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res.
2011
;
44
(
10
):
947
56
.
33.
Gao
B
,
Chen
D
,
Gu
B
,
Wang
T
,
Wang
Z
,
Yang
Y
, et al.
Facile and highly effective synthesis of nitrogen-doped graphene quantum dots as a fluorescent sensing probe for Cu2+ detection
.
Current Applied Physics.
2020
;
20
(
4
):
538
44
.
34.
Das
RK
,
Panda
S
,
Bhol
CS
,
Bhutia
SK
,
Mohapatra
S.
N-doped carbon quantum dot (NCQD)-Deposited carbon capsules for synergistic fluorescence imaging and photothermal therapy of oral cancer
.
Langmuir.
2019
;
35
(
47
):
15320
9
.
35.
Chao
D
,
Zhu
C
,
Xia
X
,
Liu
J
,
Zhang
X
,
Wang
J
, et al.
Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries
.
Nano Lett.
2015
;
15
(
1
):
565
73
.
36.
Fiordiponti
P
,
Pistoia
G
,
Temperoni
C.
Behavior of Bi2 O 3 as a cathode for lithium cells
.
J Electrochem Soc.
1978
;
125
(
1
):
14
.
37.
Li
L
,
Zhang
X
,
Zhang
Z
,
Zhang
M
,
Cong
L
,
Pan
Y
, et al.
A bismuth oxide nanosheet-coated electrospun carbon nanofiber film: a free-standing negative electrode for flexible asymmetric supercapacitors
.
Journal of Materials Chemistry A.
2016
;
4
(
42
):
16635
44
.
38.
Prasath
A
,
Athika
M
,
Duraisamy
E
,
Selva
Sharma
A,
Sankar
Devi
V,
Elumalai
P.
Carbon quantum dot-anchored bismuth oxide composites as potential electrode for lithium-ion battery and supercapacitor applications
.
ACS omega.
2019
;
4
(
3
):
4943
54
.
39.
Jing
M
,
Wang
J
,
Hou
H
,
Yang
Y
,
Zhang
Y
,
Pan
C
, et al.
Carbon quantum dot coated Mn 3 O 4 with enhanced performances for lithium-ion batteries
.
Journal of Materials Chemistry A.
2015
;
3
(
32
):
16824
30
.
40.
Javed
M
,
Saqib
ANS
,
Ali
B
,
Faizan
M
,
Anang
DA
,
Iqbal
Z
, et al.
Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries
.
Electrochim Acta.
2019
;
297
:
250
7
.
41.
Kwak
J
,
Bae
WK
,
Lee
D
,
Park
I
,
Lim
J
,
Park
M
, et al.
Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure
.
Nano Lett.
2012
;
12
(
5
):
2362
6
.
42.
Baker
SN
,
Baker
GA
.
Luminescent carbon nanodots: emergent nanolights
.
Angew Chem Int
Ed.
2010
;
49
(
38
):
6726
44
.
43.
Xie
Z
,
Yin
Z
,
Wu
Y
,
Liu
C
,
Hao
X
, Du Q, et al.
White light-emitting diodes based on individual polymerized carbon nanodots
.
Scientific reports.
2017
;
7
(
1
):
1
9
.
44.
Sun
C
,
Zhang
Y
,
Sun
K
,
Reckmeier
C
,
Zhang
T
,
Zhang
X
, et al.
Combination of carbon dot and polymer dot phosphors for white light-emitting diodes
.
Nanoscale.
2015
;
7
(
28
):
12045
50
.
45.
Semeniuk
M
,
Yi
Z
,
Poursorkhabi
V
,
Tjong
J
,
Jaffer
S
,
Lu
Z-H
, et al.
Future perspectives and review on organic carbon dots in electronic applications
.
ACS nano.
2019
;
13
(
6
):
6224
55
.
46.
Schafrik
RE
,
Church
SE
.
Protecting the Greenback
.
Scientific American.
1995
;
273
(
1
):
40
6
.
47.
Kumar
P
,
Singh
S
,
Gupta
BK
.
Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale.
2016
;
8
(
30
):
14297
340
.
48.
Park
K
,
Jung
K
,
Kwon
SJ
,
Jang
HS
,
Byun
D
,
Han
IK
, et al.
Plasmonic Nanowire-Enhanced Upconversion Luminescence for Anticounterfeit Devices
.
Adv Funct Mater.
2016
;
26
(
43
):
7836
46
.
49.
Zhang
J
,
Yu
S-H.
Carbon dots: large-scale synthesis, sensing and bioimaging
.
Mater Today.
2016
;
19
(
7
):
382
93
.
50.
Jiang
K
,
Zhang
L
,
Lu
J
,
Xu
C
,
Cai
C
,
Lin
H.
Rücktitelbild: Triple-Mode Emission of Carbon Dots: Applications for Advanced Anti-Counterfeiting (Angew. Chem. 25/2016
).
Angew Chem.
2016
;
128
(
25
):
7384
-.
51.
Kalytchuk
S
, Wang
Y
,
Poláková
Ki,
Zbořil
R.
Carbon dot fluorescence-lifetime-encoded anti-counterfeiting
.
ACS applied materials & interfaces.
2018
;
10
(
35
):
29902
8
.
This content is only available via PDF.
You do not currently have access to this content.