As the largest archipelagic country globally, Indonesia holds great energy potential to be used as electric energy, one of which is ocean wave energy. Energy from ocean waves that never run out and can reach many remote islands, becomes the optimal option to be used as a power plant in supplying electricity in Indonesia’s 3T (Underdeveloped, Frontmost, and Outermost). By utilizing the movement of waves in oscillating columns, ocean wave power plants – oscillating water column (PLTGL-OWC) become one of the simplest types of power plants, and easy to apply in various locations. This study aims to see the potential of the electric power generated by PLTGL-OWC. The data used is a hindcast of wave height, wavelength and the period from Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) during 2013-2018. Electrical power is obtained after calculating the power of ocean waves and then multiplied by the efficiency of the OWC system in this study, which is 11.917% in units of kW. It was found that the condition of sea wave height in the 3T region in this study peaked in the JJA period when the Australian monsoon was active. The area with the tremendous potential for generating power is located in West Coast Regency, Lampung with an average electrical power of 25.85 kW per year, while the lowest power potential is in Nias Regency, which is 0.12 kW per year.

1.
Cornett
.
A.M
, “A global wave energy resource assessment”,
The Eighteenth International Offshore and Polar Engineering Conference
,
International Society of Offshore and Polar Engineers
,
2008
.
2.
Dizadji
.
N
,
Seyed
E.S
, “
Modeling and optimization of the chamber of OWC system
”,
Energy
36
.
5
2360
2366
,
2011
.
3.
Febrianto
.
M.K.Y
, “Pemodelan Bentuk Oscillating Water Column Pada Pembangkit Bentuk Listrik Tenaga Gelombang Laut Di Pulau Tabuhan, Banyuwangi Untuk Kapasitas 2000 WATT”,
Diss. Institut Technology Sepuluh
Nopember,
2016
.
4.
Heath
.
T. V
, “
A review of oscillating water columns
”,
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
370
.
1959
:
235
245
,
2012
.
5.
Hutabarat
.
S
,
Evans
.
S.M
, “
Pengantar oseanografi
”,
Penerbit Universitas Indonesia (UI-Press
),
1985
.
6.
Kurniawan
.
R
,
Muhammad
.
N.H
,
Donaldi
.
S.P
, “
Kajian daerah rawan gelombang tinggi di Perairan Indonesia
”,
Jurnal Meteorologi dan Geofisika
13
.
3
,
2012
.
7.
Leijon
.
M
,
Boström
.
C
,
Danielsson
.
O
,
Gustafsson
.
S
,
Haikonen
.
K
,
Langhamer
.
O
,
Waters
.
R
, “
Wave energy from the North Sea: Experiences from the Lysekil research site
”,
Surveys in geophysics
,
29
,
221
240
,
2008
.
8.
Badan Pengkajian Dan Penerapan Teknologi
, “Indonesia Energy Outlook 2020”,
BPPT-Press
,
Jakarta
,
2020
.
9.
Situmorang
.
D.M
,
Rissa
.
A
, “
Model Pembangunan Daerah 3T: Studi Kasus Daerah Perbatasan Kabupaten Bengkayang
”,
Journal Management
,
Business, and Accounting
18
.
1
:
49
64
,
2019
.
10.
Tjasyono
.
B
, “
Klimatologi
”,
Bandung
:
ITB
,
2004
.
11.
Utami
.
S.R
, “
Studi Potensi Pembangkit Listrik Tenaga Gelombang Laut dengan Menggunakan Sistem Oscillating Water Column (OWC) di tiga puluh Wilayah Kelautan Indonesia
”,
Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia
,
2010
.
12.
Veldhuis
.
A.J
,
Reinders
.
A.H
, “
Reviewing the potential and cost-effectiveness of off-grid PV systems in Indonesia on a provincial level
”,
Renewable and Sustainable Energy Reviews
,
52
,
757
769
,
2015
.
This content is only available via PDF.
Published by AIP Publishing.
You do not currently have access to this content.