We establish the controllability for a class of abstract nonlocal impulsive neutral mixed-type functional integrodifferential equations with finite delay in a Banach space. Some sufficient conditions for controllability are obtained by using the Monch fixed point theorem via measures of non-compactness and semigroup theory. Particularly, we do not assume the compactness of the evolution system. That is, we are going to establish at less some sufficient conditions for the controllability of an impulsive neutral mixed-type functional integrodifferential system with finite delay and non-local conditions.

1.
H.
Akca
,
A.
Boucherif
,
V.
Covachev
,
Impulsive functional differential equations with nonlocal conditions
,
Int. J. Math. Math. Sci.
29
(
5
),
251
256
(
2002
).
2.
Anguraj
,
A
,
KarthIkeyan
,
P
,
Trujillo
,
J.J.
Existence of solutions to fractional mixed integro-differential equations with non local initial condition
,
Adv. Difference Equ.
(
2011
), doi. .
3.
Balasubramaniam
,
S. K.
Ntouyas
,
Controllability for neutral Stochastic functional differential inclusions with infinite delay in abstract space
,
J. Math. Anal. Appl.
324
(
2006
)
161
176
.
4.
K.
Balachandran
,
J. H.
Kim
,
S.
Karthikeyan
,
Controllability of semilinear stochastic integro-differential equations
,
Kybernetika
,
43
(
2007
),
31
44
.
5.
K.
Balachandran
and
E. R.
Anandhi
,
Controllability of neutral functional integro-differential infinite delay systems in Banach Spaces
,
Taiwanese Journal of Mathematics
,
8
(
4
)
689
702
(
2004
).
6.
Balachandran
,
K
,
Annapoorani
,
N.
Existence results for impulsive neutral evolution integrodifferential equations with infinite delay
,
Nonlinear Anal.
3
,
674
684
(
2009
).
7.
Bainov
,
D.D.
,
Minchev
,
E.
,
Trends in the theory of Impulsive partial differential equations Nonlinear word
,
3
(
1996
)
357
384
.
8.
Bainov
,
D.D
,
Simeonov
,
P. S.
Impulsive Differential Equations. Periodic Solutions and Applications
,
Longman Scientific and Technical Group
,
England
,
1993
.
9.
Banas
,
J
,
Goebel
,
K.
Measure of Non-compactness in Banach Spaces, in. Lecture Notes in Pure and Applied Matyenath
,
Marcel Dekker
,
New York
, (
1980
).
10.
M.
Benchohra
,
S. K.
Ntouyas
,
Cntrollability of neutral functional differential and integrodifferential inclusions is a Banach spaces with nonlocal conditions
,
Italian J. Pure Appl.Math.
14
(
2003
)
95
112
.
11.
Byszewski
,
L.
Theorems about existence and uniqueness of solutions of a semi-linear evolution non local Cauchy problem
,
J. Math. Anal. Appl.
162
,
494
505
(
1991
).
11.
Chang
,
Y.K
,
Chalishajar
,
D.N.
Controllability of mixed Volterra-Fredholm type integro-differential inclusions in Banach spaces
,
J. Franklin Inst.
345
,
499
507
(
2008
).
13.
R.
Cyrtain
,
H. J.
Zwart
,
An introduction to infinite dimensional linear systems theory
.
New York
.
Springer
,
1995
.
14.
T.
Caraballo
,
J.
Real
,
T.
Taniguchi
,
The exponential stability of neutral stochastic delay partial differential equations
,
Discrete and Continuous Dynamical Systems. Series A
,
18
(
2007
),
295
313
.
15.
Dhakne
,
M.B
,
Kucche
,
K.D.
Existence of a mild solution of mixed Volterra-Fredholm functional integro-differential eqnarray with non local condition
,
Appl. Math. Sci.(Ruse)
.
5
(
8
),
359
366
(
2011
).
16.
J. P.
Dauer
,
N. I.
Mahmudov
,
Controllability of stochastic semi-linear functional differential equations in Hilbert spaces
,
Journal of Mathematical Analysis and Applications
,
290
(
2004
),
373
394
.
17.
Erbe
,
L.H.
,
Freedman
,
H.I.
,
Liu
,
X.Z.
,
Wu
,
J.H.
,
Comparison principles for impulsive parabolic equations with applications to models of single species growths
,
Journal of the Australian Mathematical Society, Series B
32
(
1991
)
299
314
.
18.
K.
Ezzinbi
,
H.
Toure
,
I.
zabsonre
,
Local existence and regularity of solutions for some partial functional integro-differential equations with infinite delay in Banach spaces
,
Nonlinear Analysis
,
70
(
2009
),
3378
3389
.
19.
Fan
,
Z.
Impulsive problems for semilinear differential equations with non local conditions
,
Nonlinear Anal.
72
,
1104
1109
(
2010
).
20.
X.
Fu
,
R.
Huang
,
Existence of solutions for neutral integro-differential equations with state-dependent delay
,
Applied Mathematics and Computation
,
224
(
2013
),
743
759
.
21.
X.
Fu
,
Y.
Gao
,
Y.
Zhang
,
Existence of solutions for neutral integro-differential equations with nonlocal conditions
,
Taiwanese Journal Mathematics
,
16
(
2012
),
1879
1909
.
22.
T.
Gunasekar
,
M.
Angayarkanni
and
S.
Yasotha
,
Controllability results for impulsive neutral stochastic functional integro-differential inclusions with infinite delay
,
International Journal of Pure and Applied Mathematics
,
116
(
23
),
2017
,
311
326
.
23.
T.
Gunasekar
,
M.
Angayarkanni
and
K.R.
Salini
,
Existence and Controllability Results for Impulsive Neutral mixed type Functional Integro-differential Systems with Infinite Delay
,
Journal of Advanced Research in Dynamical and Control Systems
,
10
(
01
),
449
458
(
2018
).
24.
Guo
,
M
,
Xue
,
X
,
Li
,
R.
Controllability of impulsive evolution inclusions with non local conditions
,
J. Optim. Theory Appl.
120
,
355
374
(
2004
).
25.
T.
Gnasekar
,
F. Paul
Samuvel
and
M. Mallika
Arjunan
,
Controllability results for impulsive neutral functional evolution integrodifferential inclusions with infinite delay
.
International Journal of Science and Technology
,
2
2013
,
196
213
.
26.
T.
Gnasekar
,
F. Paul
Samuvel
and
M. Mallika
Arjunan
,
Existence of Solution for impulsive partial neutral functional evolution integrodifferential inclusions with infinite delay
,
International Journal of Pure and Applied Mathematics
,
85
(
5
)
2013
,
939
954
.
27.
T.
Gunasekar
,
M.
Angayarkanni
, and
S.
Yasotha
,
Controllability results for impulsive neutral Stochastic functional integrodifferential inclusions with infinite delay
,
International Journal of Pure and Applied Mathematics
,
116
(
23
)
2017
,
311
326
.
This content is only available via PDF.
You do not currently have access to this content.