We establish the controllability for a class of abstract nonlocal impulsive neutral mixed-type functional integrodifferential equations with finite delay in a Banach space. Some sufficient conditions for controllability are obtained by using the Monch fixed point theorem via measures of non-compactness and semigroup theory. Particularly, we do not assume the compactness of the evolution system. That is, we are going to establish at less some sufficient conditions for the controllability of an impulsive neutral mixed-type functional integrodifferential system with finite delay and non-local conditions.
REFERENCES
1.
H.
Akca
, A.
Boucherif
, V.
Covachev
, Impulsive functional differential equations with nonlocal conditions
, Int. J. Math. Math. Sci.
29
(5
), 251
–256
(2002
).2.
Anguraj
, A
, KarthIkeyan
, P
, Trujillo
, J.J.
Existence of solutions to fractional mixed integro-differential equations with non local initial condition
, Adv. Difference Equ.
(2011
), doi. .3.
Balasubramaniam
, S. K.
Ntouyas
, Controllability for neutral Stochastic functional differential inclusions with infinite delay in abstract space
, J. Math. Anal. Appl.
324
(2006
) 161
–176
.4.
K.
Balachandran
, J. H.
Kim
, S.
Karthikeyan
, Controllability of semilinear stochastic integro-differential equations
, Kybernetika
, 43
(2007
), 31
–44
.5.
K.
Balachandran
and E. R.
Anandhi
, Controllability of neutral functional integro-differential infinite delay systems in Banach Spaces
, Taiwanese Journal of Mathematics
, 8
(4
) 689
–702
(2004
).6.
Balachandran
, K
, Annapoorani
, N.
Existence results for impulsive neutral evolution integrodifferential equations with infinite delay
, Nonlinear Anal.
3
, 674
–684
(2009
).7.
Bainov
, D.D.
, Minchev
, E.
, Trends in the theory of Impulsive partial differential equations Nonlinear word
, 3
(1996
) 357
–384
.8.
Bainov
, D.D
, Simeonov
, P. S.
Impulsive Differential Equations. Periodic Solutions and Applications
, Longman Scientific and Technical Group
, England
, 1993
.9.
Banas
, J
, Goebel
, K.
Measure of Non-compactness in Banach Spaces, in. Lecture Notes in Pure and Applied Matyenath
, Marcel Dekker
, New York
, (1980
).10.
M.
Benchohra
, S. K.
Ntouyas
, Cntrollability of neutral functional differential and integrodifferential inclusions is a Banach spaces with nonlocal conditions
, Italian J. Pure Appl.Math.
14
(2003
) 95
–112
.11.
Byszewski
, L.
Theorems about existence and uniqueness of solutions of a semi-linear evolution non local Cauchy problem
, J. Math. Anal. Appl.
162
, 494
–505
(1991
).11.
Chang
, Y.K
, Chalishajar
, D.N.
Controllability of mixed Volterra-Fredholm type integro-differential inclusions in Banach spaces
, J. Franklin Inst.
345
, 499
–507
(2008
).13.
R.
Cyrtain
, H. J.
Zwart
, An introduction to infinite dimensional linear systems theory
. New York
. Springer
, 1995
.14.
T.
Caraballo
, J.
Real
, T.
Taniguchi
, The exponential stability of neutral stochastic delay partial differential equations
, Discrete and Continuous Dynamical Systems. Series A
, 18
(2007
), 295
–313
.15.
Dhakne
, M.B
, Kucche
, K.D.
Existence of a mild solution of mixed Volterra-Fredholm functional integro-differential eqnarray with non local condition
, Appl. Math. Sci.(Ruse)
. 5
(8
), 359
–366
(2011
).16.
J. P.
Dauer
, N. I.
Mahmudov
, Controllability of stochastic semi-linear functional differential equations in Hilbert spaces
, Journal of Mathematical Analysis and Applications
, 290
(2004
), 373
–394
.17.
Erbe
, L.H.
, Freedman
, H.I.
, Liu
, X.Z.
, Wu
, J.H.
, Comparison principles for impulsive parabolic equations with applications to models of single species growths
, Journal of the Australian Mathematical Society, Series B
32
(1991
) 299
–314
.18.
K.
Ezzinbi
, H.
Toure
, I.
zabsonre
, Local existence and regularity of solutions for some partial functional integro-differential equations with infinite delay in Banach spaces
, Nonlinear Analysis
, 70
(2009
), 3378
–3389
.19.
Fan
, Z.
Impulsive problems for semilinear differential equations with non local conditions
, Nonlinear Anal.
72
, 1104
–1109
(2010
).20.
X.
Fu
, R.
Huang
, Existence of solutions for neutral integro-differential equations with state-dependent delay
, Applied Mathematics and Computation
, 224
(2013
), 743
–759
.21.
X.
Fu
, Y.
Gao
, Y.
Zhang
, Existence of solutions for neutral integro-differential equations with nonlocal conditions
, Taiwanese Journal Mathematics
, 16
(2012
), 1879
–1909
.22.
T.
Gunasekar
, M.
Angayarkanni
and S.
Yasotha
, Controllability results for impulsive neutral stochastic functional integro-differential inclusions with infinite delay
, International Journal of Pure and Applied Mathematics
, 116
(23
), 2017
, 311
–326
.23.
T.
Gunasekar
, M.
Angayarkanni
and K.R.
Salini
, Existence and Controllability Results for Impulsive Neutral mixed type Functional Integro-differential Systems with Infinite Delay
, Journal of Advanced Research in Dynamical and Control Systems
, 10
(01
), 449
–458
(2018
).24.
Guo
, M
, Xue
, X
, Li
, R.
Controllability of impulsive evolution inclusions with non local conditions
, J. Optim. Theory Appl.
120
, 355
–374
(2004
).25.
T.
Gnasekar
, F. Paul
Samuvel
and M. Mallika
Arjunan
, Controllability results for impulsive neutral functional evolution integrodifferential inclusions with infinite delay
. International Journal of Science and Technology
, 2
2013
, 196
–213
.26.
T.
Gnasekar
, F. Paul
Samuvel
and M. Mallika
Arjunan
, Existence of Solution for impulsive partial neutral functional evolution integrodifferential inclusions with infinite delay
, International Journal of Pure and Applied Mathematics
, 85
(5
) 2013
, 939
–954
.27.
T.
Gunasekar
, M.
Angayarkanni
, and S.
Yasotha
, Controllability results for impulsive neutral Stochastic functional integrodifferential inclusions with infinite delay
, International Journal of Pure and Applied Mathematics
, 116
(23
) 2017
, 311
–326
.
This content is only available via PDF.
© 2022 Author(s).
2022
Author(s)
You do not currently have access to this content.