We study the oscillatory behaviour of the third-order neutral type difference equation
Where α > 0, an > 0, qn ≥ 0 and 0 ≤ pnp < ∞ by using generalized Riccatti type transformation. Also, we present some new criteria which ensure that every solution is oscillatory and we provide some examples that illustrate the important of our results.
1.
Agarwal
,
R.P.
,
Bohner
,
M.
,
Grace
,
S.R.
,
ORegan
,
D.
:
Discrete Oscillation Theory
,
Hindawi Publishing Corporation
.
New York
.
2005
.
2.
Agarwal
,
R.P.
:
Difference Equations and Inequalities, Theory, Methods and Applications
, Second Edition, Revised and Expanded.
New York
.
Marcel Dekker
2000
.
3.
Agarwal
,
R.P.
,
Wong
,
P.J.Y.
:
Advanced Topics in Difference Equations
,
Kluwer Academic Publishers
,
Drodrecht
.
1997
.
4.
R. P.
Agarwal
,
S. R.
Grace
,
D.
ORegan
,
Oscillation Theory for Difference and Functional Differential Equations
,
Kluwer Academic
,
Dordrecht
,
2000
.
5.
T.
Asaela
,
H.
YoshidaH
,
Stability, instability and complex behavior in macrodynamic models with policy lag
,
Discrete Dynamics in Nature and Society
,
5
, (
2001
),
281
295
.
6.
Andruch-Sobilo
,
A.
,
Migda
,
M.
:
On the oscillation of solutions of third order linear difference equations of neutral type
.
Math. Bohem.
130
,
19
33
(
2005
).
7.
Artzroumi
,
M.
:
Generalized stable population theory
.
J. Math. Biology.
21
,
363
381
(
1985
).
8.
B.
Baculkova
,
J.
Dzurina
,
Oscillation of third order neutral differential equations
,
Math. Comput. Modelling
,
52
, (
2010
),
215
226
.
9.
L.
Berenzansky
,
E.
Braverman
,
Some oscillation problems for a second order linear delay differential equations
,
J. Math. Anal. Appl.
220
, (
1998
),
719
740
.
10.
C.
Cesarano
and
O.
Bazighifan
,
Qualitative behavior of solutions of second order differential equations
,
Symmetry (MDPI)
,
11
(
777
) (
2019
)
8
pages.
11.
Dosla
,
Z.
,
Kobza
,
A.
:
Global asymptotic properties of third-order difference equations
.
Comput. Math. Appl.
48
,
191
200
(
2004
).
12.
Dosla
,
Z.
,
Kobza
,
A.
:
On third-order linear difference equations involving quasi-differences
.
Adv. Difference Equ.
1
13
(
2006
).
13.
O.
Dosly
,
J.
Graef
,
J.
Jaros
,
Forced oscillation of second order linear and half linear difference equations
,
Proc. Amer. Math. Soc.
131
(
2002
),
2859
2867
.
14.
D. M.
DuboisX
,
Extension of the Kaldor-Kalecki models of business cycle with a computational anticipated capital stock
,
Journal of Organisational Transformation and Social Change
,
1
, (
2004
),
63
80
.
15.
L. H.
Erbe
,
Qingkai
Kong
,
B. G.
Zhang
,
Oscillation Theory for Functional Differential Equations
,
Marcel Dekker
,
New York
,
1995
.
16.
J. M.
Ferreira
,
S.
Pinelas
,
Oscillatory mixed difference systems, Hindawi publishing corporation, Advanced in Difference Equations ID
(
2006
),
1
18
.
17.
G.
Gandolfo
,
Economic dynamics
,
Third Edition, Berlin
Springer-verlag
,
1996
.
18.
Gepreel
,
K
,
Shehata
,
AR
,
Rational Jacobi elliptic solutions for nonlinear difference differential lattice equation
,
Appl. Math. Lett.
25
(
2012
)
1173
1178
.
19.
S.R.
Grace
,
On the oscillations of mixed neutral equations
,
J. Math. Anal. Appl.
,
194
, (
1995
),
377
388
.
20.
Grace
,
S.R.
,
Lalli
,
B.S.
:
Oscillation theorems for forced neutral difference equations
.
J. Math. Anal. Appl.
187
,
91
106
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.