The problem that is obtained using implicit time integration of a unsteady nonlinear incompressible Navier-Stokes equations in the rotation form in non-convex polygonal domain is considered. The weighted finite element method based on the concept of an Rν -generalized solution is constructed. The advantage of the proposed approach over classical approximations is numerically established.

1.
V. A.
Rukavishnikov
and
E. I.
Rukavishnikova
,
Mathematics
8
,
1870
(
2020
).
2.
V. A.
Rukavishnikov
and
E. I.
Rukavishnikova
,
Differential Equations
55
,
832
840
(
2019
).
3.
V. A.
Rukavishnikov
,
Doklady Mathematics
90
,
562
564
(
2014
).
4.
V. A.
Rukavishnikov
and
A. G.
Ereklintsev
,
Differential Equations
41
,
1757
1767
(
2005
).
5.
V. A.
Rukavishnikov
and
E. V.
Kuznetsova
,
Differential Equations
45
,
913
917
(
2009
).
6.
V. A.
Rukavishnikov
and
E. I.
Rukavishnikova
,
Differential Equations
50
,
345
351
(
2014
).
7.
V. A.
Rukavishnikov
and
A. V.
Rukavishnikov
,
Journal of Computational and Applied Mathematics
341
,
144
156
(
2018
).
8.
V. A.
Rukavishnikov
,
A. O. Mosolapov, and E. I. Rukavishnikova, Computers & Structures
243
,
106400
(
2021
).
9.
V. A.
Rukavishnikov
and
E. I.
Rukavishnikova
,
Symmetry
11
,
1455
(
2019
).
10.
V. A.
Rukavishnikov
and
S. G.
Nikolaev
,
Doklady Mathematics
88
,
705
709
(
2013
).
11.
V. A.
Rukavishnikov
and
A. O.
Mosolapov
,
Journal of Computational Physics
231
,
2438
2448
(
2012
).
12.
V. A.
Rukavishnikov
and
A. O.
Mosolapov
,
Doklady Mathematics
87
,
156
159
(
2013
).
13.
V. A.
Rukavishnikov
and
A. V.
Rukavishnikov
,
Symmetry
11
,
54
(
2019
).
14.
V. A.
Rukavishnikov
and
A. V.
Rukavishnikov
,
Computer Research and Modeling
12
,
1291
1306
(
2020
).
15.
M.
Benzi
,
H.
Golub
, and
J.
Liesen
,
Acta Numerica
14
,
1
137
(
2005
).
16.
L. R.
Scott
and
M.
Vogelius
,
Mathematical Modelling and Numerical Analysis
19
,
111
143
(
1985
).
17.
J. H.
Bramble
,
J. E.
Pasciak
, and
A. T.
Vassilev
,
SIAM Journal on Numerical Analysis
34
,
1072
1092
(
1997
).
18.
V. A.
Rukavishnikov
and
A. V.
Rukavishnikov
,
Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software
11
,
95
108
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.