The problem that is obtained using implicit time integration of a unsteady nonlinear incompressible Navier-Stokes equations in the rotation form in non-convex polygonal domain is considered. The weighted finite element method based on the concept of an Rν -generalized solution is constructed. The advantage of the proposed approach over classical approximations is numerically established.
REFERENCES
1.
V. A.
Rukavishnikov
and E. I.
Rukavishnikova
, Mathematics
8
, 1870
(2020
).2.
V. A.
Rukavishnikov
and E. I.
Rukavishnikova
, Differential Equations
55
, 832
–840
(2019
).3.
V. A.
Rukavishnikov
, Doklady Mathematics
90
, 562
–564
(2014
).4.
V. A.
Rukavishnikov
and A. G.
Ereklintsev
, Differential Equations
41
, 1757
–1767
(2005
).5.
V. A.
Rukavishnikov
and E. V.
Kuznetsova
, Differential Equations
45
, 913
–917
(2009
).6.
V. A.
Rukavishnikov
and E. I.
Rukavishnikova
, Differential Equations
50
, 345
–351
(2014
).7.
V. A.
Rukavishnikov
and A. V.
Rukavishnikov
, Journal of Computational and Applied Mathematics
341
, 144
–156
(2018
).8.
V. A.
Rukavishnikov
, A. O. Mosolapov, and E. I. Rukavishnikova, Computers & Structures
243
, 106400
(2021
).9.
V. A.
Rukavishnikov
and E. I.
Rukavishnikova
, Symmetry
11
, 1455
(2019
).10.
V. A.
Rukavishnikov
and S. G.
Nikolaev
, Doklady Mathematics
88
, 705
–709
(2013
).11.
V. A.
Rukavishnikov
and A. O.
Mosolapov
, Journal of Computational Physics
231
, 2438
–2448
(2012
).12.
V. A.
Rukavishnikov
and A. O.
Mosolapov
, Doklady Mathematics
87
, 156
–159
(2013
).13.
V. A.
Rukavishnikov
and A. V.
Rukavishnikov
, Symmetry
11
, 54
(2019
).14.
V. A.
Rukavishnikov
and A. V.
Rukavishnikov
, Computer Research and Modeling
12
, 1291
–1306
(2020
).15.
M.
Benzi
, H.
Golub
, and J.
Liesen
, Acta Numerica
14
, 1
–137
(2005
).16.
L. R.
Scott
and M.
Vogelius
, Mathematical Modelling and Numerical Analysis
19
, 111
–143
(1985
).17.
J. H.
Bramble
, J. E.
Pasciak
, and A. T.
Vassilev
, SIAM Journal on Numerical Analysis
34
, 1072
–1092
(1997
).18.
V. A.
Rukavishnikov
and A. V.
Rukavishnikov
, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software
11
, 95
–108
(2018
).
This content is only available via PDF.
© 2022 Author(s).
2022
Author(s)
You do not currently have access to this content.