The PM10 (Particulate Matter with diameter of 10 microns or less) is a major air pollutant with a number of harmful effects on human health. As a primary pollutant, it is also an indicator of the overall level of the ecological state of the environment. This determines the need and appropriateness of research on the accumulated empirical data, especially in affected areas. This paper examines the average daily PM10 levels in a specific region of Bulgaria, near the Black Sea coast and a large refinery for oil and petroleum products. The data of PM10 and meteorological variables such as air temperature, humidity, wind speed and others for a period of more than 6 years are studied. Using the Box-Jenkins ARIMA model, an autoregressive term was identified in the PM10 time series, which was used as an additional predictor in the models. Regression analysis with the Random Forest (RF) machine learning method is used for statistical modeling of the time series. RF models were obtained describing the data by almost 94%. The models are applied for short-term forecasts of PM10 pollution with 1 to 7 days ahead. The comparison with the actual measurements showed that the proposed approach gives very good results and could be embedded in mobile software for air pollution forecasting.

1.
A. D.
Kappos
,
P.
Bruckmann
,
T.
Eikmann
,
N.
Englert
 et al,
Health effects of particles in ambient air
,
International Journal of Hygiene and Environmental Health
207
(
4
),
399
407
(
2004
).
2.
W.
McNee
and
K.
Donaldson
,
Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD
,
European Respiratory Journal, Supplement
21
(
40
),
47S
51S
(
2003
).
3.
N.
Parveen
,
L.
Siddiqui
,
M.N.
Sarif
,
M.S.
Islam
,
N.
Khanam
, and
S.
Mohibul
,
Industries in Delhi: Air pollution versus respiratory morbidities
,
Process Safety and Environmental Protection
152
,
495
512
(
2021
).
4.
N. A. H.
Janssen
,
P.
Fischer
,
M.
Marra
,
C.
Ameling
, and
F. R.
Casse
,
Short-term effects of PM2.5, PM10 and PM2.5–10 on daily mortality in the Netherlands
,
Science of The Total Environment
463–464
,
20
26
(
2013
).
5.
T.
Suwa
,
J.C.
Hogg
,
K.B.
Quinlan
,
A.
Ohgami
,
R.
Vincent
, and
S.F.
Van Eeden
,
Particulate air pollution induces progression of atherosclerosis
,
Journal of the American College of Cardiology
39
(
6
),
935
942
(
2002
).
6.
J.
Kettunen
,
T.
Lanki
,
P.
Tiittanen
,
P.P.
Aalto
,
T.
Koskentalo
,
M.
Kulmala
,
V.
Salomaa
, and
J.
Pekkanen
,
Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels
,
Stroke
38
(
3
),
918
922
(
2007
).
7.
R.
Navares
and
J. L.
Aznarte
,
Predicting air quality with deep learning LSTM: Towards comprehensive models
,
Ecological Informatics
55
,
101019
(
2020
).
8.
S. A. Ali
Shah
,
W.
Aziz
,
M.
Almaraashi
,
M. S. Ahmed
Nadeem
,
N.
Habib
, and
S.-O.
Shim
,
A hybrid model for forecasting of particulate matter concentrations based on multiscale characterization and machine learning techniques
,
Mathematical Biosciences and Engineering
18
(
3
),
1992
2009
(
2021
).
9.
A.
Suleiman
,
M. R.
Tight
, and
A. D.
Quinn
,
Applying machine learning methods in managing urban concentrations of traffic-related particulate matter (PM10 and PM2.5
),
Atmospheric Pollution Research
10
(
1
),
134
144
(
2019
).
10.
A. Suárez
Sánchez
,
P. J. García
Nieto
,
P. Riesgo
Fernández
,
J. J. del Coz
Díaz
, and
F. J.
Iglesias-Rodríguez
,
Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain
),
Mathematical and Computer Modelling
54
(
5-6
),
1453
1466
(
2011
).
11.
Executive Environment Agency (ExEA)
Bulgaria, http://pdbase.government.bg/airq/ bulletin-en.jsp.
12.
I.
Zheleva
,
E.
Veleva
, and
M.
Filipova
, “
Analysis and modeling of daily air pollutants in the city of Ruse, Bulgaria
,” in
AMiTaNS’17,
AIP Conference Proceedings
1895
, edited by
M.
Todorov
(
American Institute of Physics
,
Melville, NY
,
2017
),
030007
.
13.
I.
Tsvetanova
,
I.
Zheleva
,
M.
Filipova
, and
A.
Stefanova
, “
Statistical analysis of ambient air PM10 contamination during winter periods for Ruse region, Bulgaria
,” in
MATEC Web of Conferences
145
,
01007
(
2018
), NCTAM 2017, .
14.
E.
Veleva
and
I.
Zheleva
, “
Statistical modeling of particle mater air pollutants in the city of Ruse, Bulgaria
”, in
MATEC Web of Conferences
145
,
1010
(
2018
), DOI: .
15.
M.
Filipova
,
I.
Zheleva
, and
P.
Roussev
,
Characteristics of PM air pollution along Bulgaria - Romania Danube region
,
Ecologica
71
,
215
217
(
2013
).
16.
M.
Filipova
,
I.
Zheleva
,
P.
Rusev
,
D.
Stefanova
, and
I.
Tsvetanova
, “
Analysis of the state of ambient air in the border region Bulgaria –Romania
,” in
Proceedings of the International Symposium “Environment and Industry”
(
SIMI
,
Bucharest
,
2016
), pp.
440
450
, DOI:.
17.
S.
Gocheva-Ilieva
and
A.
Ivanov
,
Assaying stochastic SARIMA and generalized regularized regression for particulate matter PM10 modeling and forecasting
,
International Journal of Environment and Pollution (IJEP)
66
(
1-3
),
41
62
(
2019
).
18.
S.
Gocheva-Ilieva
,
A.
Ivanov
, and
M.
Stoimenova-Minova
, “Prediction of PM10 air pollution using random forests with ARIMA error correction,” in
Aplimat Conference Proceedings
(
Slovak University of Technology in Bratislava
,
Bratislava
,
2020
), pp.
546
554
.
19.
A.
Ivanov
,
D.
Voynikova
,
M.
Stoimenova
,
S.
Gocheva-Ilieva
, and
I.
Iliev
, “
Random forest models of particulate matter PM10: A case study
,” in
AMiTaNS’18,
AIP Conference Proceedings
2025
, edited by
M.
Todorov
(
American Institute of Physics
,
Melville, NY
,
2018
),
030001
.
20.
S. G.
Gocheva-Ilieva
,
A. V.
Ivanov
,
D. S.
Voynikova
, and
M.P.
Stoimenova
, “Modeling of PM10 air pollution in urban environment using MARS,” in
Lecture Notes in Computer Science
, edited by
I.
Lirkov
and
S.
Margenov
, (
Springer
,
Cham
,
2020
) 11958, Ch. 27, pp.
237
244
.
21.
S. G.
Gocheva-Ilieva
,
A.V.
Ivanov
, and
I. E.
Livieris
,
High performance machine learning models of large scale air pollution data in urban area
,
Cybernetics and Information Technologies
20
(
6
),
49
60
(
2020
). Special Issue on Scalable Methods and Algorithms, DOI: .
22.
I.
Ganchev
,
Z.
,
Ji
, and
M.
O’Droma
,
Designing a cloud tier for the iot platform EMULSION
,
WSEAS Transactions on Systems and Control
14
,
375
383
, #46 (
2019
).
23.
Salford Predictive Modeler: https://www.minitab.com/en-us/products/spm/.
24.
L.
Breiman
,
Random forests, Machine Learning
45
(
1
),
5
32
(
2001
), DOI:.
25.
T. K.
Ho
, “Random decision forests (PDF),” in
Proceedings of the 3rd International Conference on Document Analysis and Recognition
(
QC, Montreal
,
1995
), pp.
278
282
.
26.
T.
K
,
Ho
,
The random subspace method for constructing decision forests (PDF
),
IEEE Transactions on Pattern Analysis and Machine Intelligence
20
(
8
),
832
844
(
1998
). Doi:.
This content is only available via PDF.
You do not currently have access to this content.