The propagation time of a signal, emitted by a moving along an elliptical orbit satellite from the GPS (or GLONASS) satellite confi gurations is a very important ingredient of the theory, based on the formalism of the null cone and accounting for the effects of the General Relativity Theory. For the case of satellites, orbiting along a plane elliptic orbit, it has been proved that the propagation time for the signal between the satellites is given by a combination of elliptic integrals of the first, second and third kind. For the more general case of satellites on a space-distributed elliptic orbit, the propagation time is expressed by higher (fourth) order elliptic integrals, which according to the standard theory can be expressed recurrently by means of lower-order elliptic integrals. In the concrete case, the elliptic integrals of the second and the fourth order are expressed by means of a combination of irrational functions and the zero-order elliptic integral in the Legendre form. It has been proved that for the investigated case, second-order elliptic integrals can be expressed by elementary functions.

1.
B.
Hoffmann-Wellenhof
, and
H.
Moritz
,
Physical Geodesy
(
Springer-Verlag
,
Wien-New York
,
2005
).
2.
Y.
Xie
,
Front. Astron. Space Sci.
3
,
15
(
2016
).
3.
S. G.
Turyshev
,
V. T.
Toth
, and
M. V.
Sazhin
,
Phys. Rev. D
87
,
024020
(
2013
), arXiv:1212.0232v4[gr-qc].
4.
S. G.
Turyshev
,
M. V.
Sazhin
, and
V. T.
Toth
,
Phys. Rev. D
89
,
105029
(
2014
), arXiv:1402.7111v1[qr-qc].
5.
S. G.
Turyshev
,
N.
Yu
, and
V. T.
Toth
,
Phys. Rev. D
93
,
045027
(
2016
), arXiv:1512.09019v2[gr-qc].
6.
G.
Petit
,
P.
Wolf
, and
P.
Delva
, in
Frontiers in Relativistic Celestial Mechanics. Applications and Experiments
, vol.
2
(
De Gruyter and Co
.,
Berlin
,
2014
).
7.
O. J.
Sovers
,
J. L.
Fanselow
, and
C. S.
Jacobs
,
Rev. Mod. Phys.
70
,
1393
(
1998
).
8.
B. G.
Dimitrov
,
third extended version of arXiv
:1712.01101[gr-qc], to be submitted.
9.
B. G.
Dimitrov
, in
AIP Conference Proceedings 2075
(
American Institute of Physics
,
Melville, NY
,
2019
), paper 040007, .
10.
M. H.
Soffel
and
R.
Langhans
,
Space-Time Reference Systems
(
Springer-Verlag
,
Berlin Heidelberg
,
2013
).
11.
G.
Xu
,
GPS Theory, Algorithms and Applications
(
Springer-Verlag
,
Berlin Heidelberg
,
2007
).
12.
V. V.
Prasolov
and
Y. P.
Solov’yev
, Elliptic Functions and Elliptic Integrals,
AMS Translations of Mathematical Monographs 170 (R.I., Providence); Russian original: V.V. Prasolov and Y. P. Solov’yev, Elliptic Functions and Algebraic Equations
(
Factorial Publishing House
,
Moscow
,
1997
).
13.
J. -F.
Pascual-Sanchez
,
Annalen der Physik
16
,
258
(
1997
).
14.
B.
D’Urso
,
Z.B.
Etienne
,
M. R.
Feldman
,
S. M.
Kopeikin
,
V.
Trimble
, and L.Yi,
Bull. Amer. Astron. Soc.
51
, Iss.
3
, id.
556
(
2019
).
15.
V. A.
Fock
,
Theory of Space, Time and Gravitation
(
Pergamon Press
,
New York
,
1959
).
16.
S. M.
Kopeikin
,
M.
Efroimsky
, and
G.
Kaplan
,
Relativistic Celestial Mechanics of the Solar System
(
Wiley-VCH
,
New York
,
2011
).
17.
A. F.
Timofeev
,
Integration of Functions
(
State Publishing House for Technical-Theoretical Literature
,
Moscow Leningrad
,
1948
).
18.
I. I.
Liashko
,
A. K.
Boyarchuk
,
I. G.
Gai
, and
A. F.
Kalaida
,
Mathematical Analysis
, Vol.
1
(
Publishing House “Vishta Shkola”
,
Kiev
,
1983
).
19.
G. M.
Fichtenholz
,
Course in Differential and Integral Calculus
, Vol.
2
, 8th edn (
Fizmatlit
,
2003
).
20.
M.
Gulklett
, Relativistic effects in GPS and LEO, October 8 2003, PhD Thesis,
University of Copenhagen
,
Denmark
, available at https://www.yumpu.com/en/document/view/4706552/.
21.
V. I.
Smirnov
,
A Course of Higher Mathematics: Vol. 3, Part 2: Complex Variables Special Functions (International Series of Monographs in Pure and Applied Mathematics: Volume 60)
(
Pergamon Press
,
1964
).
This content is only available via PDF.
You do not currently have access to this content.