We consider a couple of integrodifferential PDEs arising from a stochastic Markovian control problem subjected to initial-terminal conditions. These equations correspond to the MFG system for a controlled jump-diffusion process. We prove that for a specific choice of the control function the expectation of the jump-diffusion process can be found explicitly. The study is an extension of similar results known for the pure diffusion process. As an example, we show how this can be applied to the problem of investors evaluating the trend of an asset when choosing an optimal portfolio.

1.
A.
Bensoussan
,
K.C.J.
Sung
,
S.C.P.
Yam
, and
S.P.
Yung
,
Linear-quadratic mean field games
,
J. Optim. Theory Appl.
169
,
496
52
(
2016
).
2.
T.
Bielecki
,
S.
Pliska
, and
M.
Sherris
,
Risk sensitive asset allocation
,
Journal of Economic Dynamics and Control
24
,
1145
1177
(
2000
).
3.
P.E.
Caines
,
M.
Huang
, and
R.P.
Malhamé
,
Mean Field Games. Handbook of Dynamic Game Theory
,
T.
Basar
and
G.
Zaccour
(Eds) (
Springer
,
2017
).
4.
P.
Cardaliaguet
and
C.-A.
Lehalle
,
Mean Field Game of Controls and An Application To Trade Crowding
,
Mathematics and Financial Eco- nomics
12
(
3
),
335
363
(
2018
).
5.
L.
Fatone
,
F.
Mariani
,
M.
Recchioni
, and
F.
Zirilli
,
A trading execution model based on mean field games and optimal control
,
Appl. Math.
5
,
3091
3116
(
2014
).
6.
G.-R.
Huang
,
D.B.
Saakian
,
O.S.
Rozanova
,
J.-L.
Yu
, and
C.-K.
Hu
,
Exact solution of master equation with Gaussian and compound Poisson noises
,
Journal of Statistical Mechanics: Theory and Experiment
,
11
,
P11033
(
2014
).
7.
J.E.
Ingersoll
,
Theory of Financial Decision Making
(
Rowman and Littlefield
,
Totowa, NJ
,
1987
).
8.
D.A.
Gomes
and
J.
Saede
,
Mean field games models – A brief survey
,
Dynamic Games and Applications
4
,
110
154
(
2013
).
9.
P.J.
Graber
,
V.
Ignazio
, and
A.
Neufeld
,
Nonlocal Bertrand and Cournot mean field games with general nonlinear demand schedule
,
Journal de Mathématiques Pures et Appliquées
148
,
150
198
(
2021
).
10.
O.
Guéant
,
J.M.
Lasry
, and
P.L.
Lions
,
Mean field games and applications, Paris-Princeton lectures on mathematical finance
(
Springer
,
2010
), pp.
205
266
.
11.
R.E.
Lucas
and
B.
Moll
,
Knowledge growth and the allocation of time
,
J. Political Econ.
122
,
1
51
(
2014
).
12.
R.C.
Merton
,
Continuous Time Finance
(
Wiley-Blackwell
,
1992
).
13.
S.I.
Nikulin
and
O.S.
Rozanova
,
On certain analytically solvable problems of mean field games theory
,
Moscow University Mathematics Bulletin
75
,
139
148
(
2020
).
14.
B.
Øksendal
,
Stochastic Differential Equations. Introduction in Theory and Applications
, 5th edn (
Springer
,
Heidelberg-New York
,
2000
).
15.
B.
Øksendal
and
A.
Sulem
,
Applied Stochastic Control of Jump Diffusions
(
Springer
,
Berlin-Heidelberg-New York
,
2005
).
16.
A.
Porretta
and
L.
Rossi
,
Traveling waves for a nonlocal KPP equation and mean-feld game models of knowledge diffusion
, arXiv:2010. 10828.
17.
N.
Trusov
,
Application of mean field games approximation to economic processes modeling
,
Tr. ISA RAN
68
(
2
),
88
91
(
2018
). [in Russian]
18.
J.
Yong
,
Linear-Quadratic Optimal Control Problems for Mean-Field Stochastic Differential Equations
,
SIAM J. Control Optim.
51
,
2809
2838
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.