Oceanic Anoxic Events (OAEs) are the past historical phenomena that was due to the change in the in global climatic pattern for a short interval of time. The widespread of marine matter-rich sediments and a significant disruption in the global carbon cycle characterize this. A comprehensive study of anoxic events has been done in the regional to global context. But this is limited when comes to Indian arena especially in Himalayan foreland basin sediments. There are variety of evidences shown by researchers for the occurrence of OAEs on the basis of various tools like colour, Geochemical, maturation of organic content, and deposition of shale. In this paper we are showing the Subathu has occurrence of black, gray, olive-green shale. Which is indicator of anoxic events along with other geochemical proxies. This deposition of Paleocene – Eocene time is associated with Indian Eurasian collision and thermal maxima. Some good sections of shale exposure and their total organic content lies between 0.8 to 2.4% which is very much similar in other well-defined sides of anoxic events. to support this, we also use XRF data and use the proxies of The Ni/Co ratio (av. 5.5) and V/(V+Ni) ratio (av. 5.0) confirms to sub-oxic to anoxic depositional settings.

1.
Medlicott
,
H.B.
,
1864
:
On the geological structure and relations of the southern portion of the Himalayan Ranges between the Rivers Ganges and Ravee
.
Memoirs of the Geological Survey of India
,
III
(
2
):
1
212
.
2.
Raiverman
,
V.
and
Raman
,
K.S.
,
1971
.
Facies relations in the Subathu sediments, Simla Hills, northwestern Himalaya, India
.
Geological Magazine
,
108
(
4
), pp.
329
341
.
3.
Srikantia
,
S.V.
and
Bhargava
,
O.N.
,
1998
.
Geology of Himachal Pradesh.GSI Publications
,
2
(
1
).
4.
Pettijohn
FJ
(
1984
)
Sedimentary rocks
,
3rd edn
.
Harper and Row
,
New York
.
5.
Najman
,
Y.
,
Johnson
,
K.
,
White
,
N.
,
Oliver
,
G.
,
2004
.
Evolution of the Himalayan foreland basin, NW India
.
Basin Res.
16
(
1
),
1
24
.
6.
Bhatia
,
S.B.
and
Bhargava
,
O.N.
,
2006
.
Biochronological continuity of the Paleogene sediments of the Himalayan Foreland Basin: paleontological and other evidences
.
Journal of Asian Earth Sciences
,
26
(
5
), pp.
477
-
487
.
7.
Bera
M. K.
,
Sarkar
,
A.
,
Chakraborty
,
P. P.
,
Loyal
,
R. S.
and
Sanyal
,
P.
2008
.
Marine to continental transition in Himalayan foreland
.
Bulletin Geological Society of America
,
120
(
9/10
):
1214
1232
; doi:
8.
Singh
,
B.P.
,
2013
.
Evolution of the Paleogene succession of the western Himalayan foreland basin
.
Geoscience Frontiers
,
4
(
2
), pp.
199
212
.
9.
Mathur
,
N.S.
and
Juyal
,
K.P.
,
1999
:
Atlas of Early Paleogene invertebrate fossils of the Himalayan foothills belt
.
Wadia Institute of Himalayan Geology, Monograph series
,
1
:
1
256
.
10.
Bhargava
,
O.N.
,
Singh
,
I.N.D.E.R.
,
Hans
,
S.K.
and
Bassi
,
U.K.
,
1998
.
Early Cambrian trace and trilobite fossils from the Nigali Dhar Syncline (Sirmaur District, Himachal Pradesh), lithostratigraphic correlation and fossil content of the Tal Group
.
Himalayan Geology
,
7P
(
1
), pp.
89
108
.
11.
Singh
,
P.
,
1970
:
Larger foraminifera from the Subathus of Beragua-Jangalgali area, Jammu and Kashmir State
.
Journal of Geological Society of India
,
11
(
1
):
34
44
.
12.
Singh
,
P.
,
1980
: Biostratigraphy of the Subathu Formation, Bilaspur-Simla Highway, Himachal Pradesh. Unpublished M.Sc. Dissertation,
Panjab University
,
Chandigarh
,
1
61
.
13.
Kumar
,
R.S.
,
1997
.
Vertical distribution and abundance of sediment dwelling macro-invertebrates in an estuarine mangrove biotope-southwest coast of India
.
14.
Raiverman
,
V.
,
1979
.
Stratigraphy and facies distribution, Subathu sediments, Simla Hills, northwestern Himalaya
.
Geological Survey of India Miscellaneous Publications
,
41
,
111
125
.
15.
Raiverman
,
V.
,
2002
.
Foreland sedimentation in Himalayan tectonic regime: a relook at the orogenic process.
16.
Mathur.
N.S.
,
1977
.
Age of the Tal and Subathu Formations in the Garhwal region, Uttar Pradesh, India
.
Bulletin of the Indian Association of Geologists
,
10
(
2
),
21
27
.
17.
Mathur
,
N.S.
1981
.
Biostratigraphy of the Cretaceous-Eocene sequence in the Himalaya in relation to palaeobiogeography
.
Himalayan Geology
,
11
287
322
.
18.
Mathur
,
N.S.
1983
. The Indus Formation of the Ladakh Himalaya: its biozonation, correlation and faunal provincialism. In:
Thakur
,
V.C.
&
Sharma
,
K.K.
(eds)
,
Geology of Indus Suture Zone of Ladakh
.
127
144
,
Wadia Institute of Himalayan Geology
,
Dehradun
.
19.
Mathur
,
N.S.
1990
.
Tethyan Cretaceous sediments in the northwest Himalaya
.
Cretaceous Research
,
11
,
289
305
.
20.
Mathur
,
N.S.
1997
. A comparative study of lower Tertiary biostratigraphic sequences in the northwest Himalaya and their paleogeographic significance. In:
Sinha
,
A. K.
,
Sassi
,
F.P.
Papanikolaou
, D. (eds
),
Geodynamic Domains in Alpine-Himalayan Tethys, Special Publication of IGCP Project 276
,
125
158
,
Oxford and IBH, New Delhi and A.A. Balkema, Rotterdam
.
21.
Karunakaran
,
C.
and
Ranga Rao
,
A.
,
1979
.
Status of exploration for hydrocarbon in the Himalayan Region. Himalayan Geol. Seminar. New Delhi 1976
.
Jour. Geol. Surv. India, Misc. Publ
,
41
, pp.
1
66
p.
22.
Bhatia
,
S. B.
, Facies,
Fauna and Flora of the Lower Tertiary Formations of Northwestern Himalaya: A Synthesis
,
Paleontological Society of India, Special Publication No. 1
,
1982
,
1
20
.
23.
Najman
,
Y.
,
Clift
,
P.D.
,
Johnson
,
M.R.W.
and
Robertson
,
A.H.F.
,
1993
:
Early stages of foreland basin evolution in the Lesser Himalaya, N. India
. In
Treloar
,
P.J.
, and
Searle
,
M.P.
, (eds.),
Himalayan tectonics: Geological Society London Special Publications
,
74
(
1
):
541
558
.
24.
Najman
,
Y.
,
Clift
,
P.
,
Johnson
,
M. R. W.
and
Robertson
,
A. H. F.
1994
. Early stages of foreland basin evolution in the Lesser Himalayas, North India, p.
541
558
. In:
Himalayan Tectonics
(Eds.
Trelor
,
P.J.
, and
Searle
,
M.P.
),
Geological Society London Special Publication
, 74.
25.
Najman
,
Y.
,
Garzanti
,
E.
,
2000
.
Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, northern India
.
Geol. Soc. Am. Bull.
112
,
435
449
.
26.
Valdiya
,
K.S.
,
1980
: Geology of Kumaun Lesser Himalaya.
Wadia Institute of Himalayan Geology
,
Dehra Dun, India
,
291p
.
27.
Valdiya
,
K. S.
1998
.
Dynamic Himalaya. Educational Monograph of The Jawahar Lal Nehru Centre for Advanced Scientific Research
,
Bangalore
.
University Press (India) Ltd
28.
Pandey
,
G.
,
Bhattacharjee
,
G.
,
Veluswamy
,
H.P.
,
Kumar
,
R.
,
Sangwai
,
J. S.
,
Linga
,
P.
,
Appl. Energy Mater.
1
,
6899
6911
(
2018
).
29.
Mech
,
D.
,
Pandey
,
G.
,
Sangwai
,
J. S.
,
Fluid Phase Equilib.
402
,
9
17
(
2015
).
30.
Pandey
,
G.
,
Kumar
,
A.
,
Veluswamy
,
H.P.
,
Sangwai
,
J. S.
,
Linga
,
P.
,
Energy Procedia.
143
,
786
791
(
2017
).
31.
Pandey
,
G.
,
Linga
,
P.
,
Sangwai
,
J. S.
,
Rev. Sci. Instrum.
88
,
025102
(
2017
).
32.
PEARCE
,
C. R.
,
COHEN
,
A. S.
,
COE
,
A.L.
and
BURTON
,
K.W.
(
2008
).
Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic
.
Geology
, v.
36
.
33.
Nozaki
,
T.
,
Kato
,
Y.
and
Suzuki
,
K.
(
2013
)
Late Jurassic Ocean anoxic event: Evidence from voluminous sulphide deposition and preservation in the Panthalassa
.
Scientific Reports
, v.
3
, Article number
1889
.
34.
Wignall
,
P. B.
1994
.
Black Shales: Oxford Monographs on Geology and Geophysics
, v.
30
.
Oxford University Press
.
Oxford, UK
.
127
.
35.
Demaison
,
G.J.
and
Moore
,
G.T.
(
1980
)
Anoxic environments and oil source bed genesis. Org. Geochem.
, v.
2
, pp.
9
31
.
36.
Sundriyal
,
S.
,
Shukla
,
T.
,
Tripathee
,
L.
,
Dobhal
,
D.P.
,
Tiwari
,
S.K.
and
Bhan
,
U.
,
2018
.
Deposition of atmospheric pollutant and their chemical characterization in snow pit profile at Dokriani Glacier, Central Himalaya
.
Journal of Mountain Science
,
75
(
10
), pp.
2236
2246
.
37.
Singh
,
R.J.
,
Milankumar
,
K.S.
,
Ghosh
,
T.
and
Kumar
,
P.
,
2015
.
Tectonic architecture of the Paleogene belt and adjoining lithostratigraphic units in Parwanoo-Subathu sector of the Himachal Himalaya, India
.
Indian Journal of Geosciences
,
69
(
1
), pp.
31
44
.
38.
Chester
,
R.
and
Messiha-Hanna
,
R.G.
(
1970
)
Trace element partition patterns in North Atlantic deep-sea sediments
.
Geochim. Cosmochim. Acta
, v.
34
, pp.
1121
1128
39.
Arthur
,
M.A.
and
Sageman
,
B.B.
,
1994
.
Marine black shales: depositional mechanisms and environments of ancient deposits
.
Annual Review of Earth and Planetary Sciences
,
22
(
1
),
499
.
40.
LAFARGUE
,
E.
,
MARQUIS
,
F.
and
PILLOT
,
D.
(
1998
)
Rock-Eval 6 applications in hydrocarbon exploration
, p
421
437
.
41.
Jenkyns
,
H.C.
,
Matthews
,
A.
,
Tsikos
,
H.
and
Erel
,
Y.
(
2007
)
Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event
.
Paleoceanography,
22
, PA3208 doi: . roduction and soil contamination studies. Oil Gas Sci. Technol., v.53, pp.
421
437
.
42.
Solan District
,
H.P.
,
SUB-HIMALAYAN PALAEOGENE SUCCESSION OF SHIMLA HILLS.
43.
Bhatia
,
S.B.
,
2000
.
Faunal and floral diversity in the Subathu-Dagshai passage beds: a review
.
Himalayan Geology
,
21
,
87
98
.
44.
Tsikos
,
H.
,
Jenkyns
,
H.C.
,
Walsworth-Bell
,
B.
,
Petrizzo
,
M.R.
,
Forster
,
A.
,
Kolonic
,
S.
,
Erba
,
E.
,
Silva
,
I.P.
,
Baas
,
M.
,
Wagner
,
T.
and
Damsté
,
J.S.
,
2004
.
Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: correlation and implications based on three key localities
.
Journal of the Geological Society
,
161
(
4
),
711
719
.
45.
Arora
,
A.
,
Banerjee
,
S.
&
Dutta
,
S.
Black shale in late Jurassic Jhuran Formation of Kutch: Possible indicator of oceanic anoxic event?
.
J Geol Soc India
85
,
265
278
(
2015
). .
46.
Jones
,
C.E.
and
Jenkyns
,
H.C.
(
2001
)
Seawater strontium isotopes, oceanic anoxic events and seafloor hydrothermal activity in the Jurassic and Cretaceous
.
Amer. Jour. Sci.
, v.
111
,
112
149
.
47.
Dypvik
,
H.
(
1984
)
Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays
,
England. Geol. Mag.
, v.
121
, pp.
489
504
.
48.
Wignall
,
P.B.
and
Myers
,
K.J.
,
1988
.
Interpreting benthic oxygen levels in mudrocks: a new approach
.
Geology
,
16
(
5
), pp.
452
455
.
49.
Chester
,
R.
and
Messiha-Hanna
,
R.G.
(
1970
)
Trace element partition patterns in North Atlantic deep-sea sediments
.
Geochim. Cosmochim. Acta
, v.
34
, pp.
1121
1128
.
50.
Jacobs
,
L.
,
Emerson
,
S.
and
Skei
,
J.
(
1985
)
Partitioning and transport of metals across the O2 /H2 S interface in a permanently anoxic basin: Framvaren Fjord, Norway
.
Geochim. Cosmochim. Acta
, v.
49
, pp.
1433
-
1444
.
51.
Jones
,
B.
and
Manning
,
D.A.C.
(
1994
).
Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones
.
Chem. Geol.
, v.
111
, pp.
111
129
.
52.
Arthur
,
M.A.
and
Sageman
,
B.B.
,
1994
.
Marine black shales: depositional mechanisms and environments of ancient deposits
.
Annual Review of Earth and Planetary Sciences
,
22
(
1
),
499
53.
Gupta
,
S.
and
Kumar
,
K.
,
2019
.
Precursors of the Paleocene–Eocene Thermal Maximum (PETM) in the Subathu Group, NW sub-Himalaya, India
.
Journal of Asian Earth Sciences
,
169
, pp.
21
46
.
54.
Schlanger
,
S.O.
and
Jenkyns
,
H.C.
,
1976
.
Cretaceous oceanic anoxic events: causes and consequences
.
Geologie en mijnbouw
,
55
(
3-4
),
179
184
.
55.
Paulmier
,
A.
and
Ruiz-Pino
,
D.
(
2009
)
Oxygen minimum zones (OMZs) in the modern ocean
.
Progress in Oceanogr.
, v.
80
, pp.
113
128
.
56.
THEEDE
,
H.
(
1973
)
Influence of oxygen deficiency and H2 S on marine invertebrates
.
Neth. Jour. Sea Res.
, v.
7
, pp.
244
252
.
57.
Wignall
,
P. B.
1994
.
Black Shales: Oxford Monographs on Geology and Geophysics
, v.
30
.
Oxford University Press
.
Oxford, UK
.
127
.
58.
Hesselbo
,
S.P.
,
Grocke
,
D.R.
,
Jenkyns
,
H.C.
,
Bjerrum
,
C.J.
,
Farrimond
,
P.
,
Morgans Bell
,
H.S.
and
Green
,
O.R.
(
2000
)
Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event
.
Nature
, v.
406
,
392
395
.
59.
Mech
,
D.
,
Pandey
,
G.
,
Sangwai
,
J. S.
,
J. Chem. Eng. Data.
,
60
,
1878
1885
(
2015
).
60.
Pandey
,
G.
and
Sangwai
,
J. S.
,
J. Nat. Gas Sci. Eng.
81
,
103365
(
2020
).
61.
Govindarajan
V.
,
Mech
D.
,
Pandey
G.
,
Sangwai
J. S.
,
J. Nat. Gas Sci. Eng.
26
,
810
818
(
2015
).
62.
Pandey
G.
,
Veluswamy
H.P.
,
Sangwai
J. S.
and
Linga
P.
,
Energy Fuels.
33
,
4865
4876
(
2019
).
63.
Pandey
G.
,
Sangwai
J. S.
, “
High pressure rheology of gas hydrate in multiphase flow systems
.”
Fifth International Conference in Ocean Engineering (ICOE2019
) (
Springer
,
Singapore
,
2020
), pp.
321
327
.
64.
Ghosh
,
S.
,
Galvis-Portilla
,
H.A
,
Klockow
,
Slatt
,
R.M.
(
2019
)
An application of outcrop analogues to understanding the origin and abundance of natural fractures in the Woodford Shale
J. Pet. Sci. Eng.
,
164
(2018) (2018), pp.
623
639
.
65.
Ghosh
S.
,
Hooker
J.N.
,
Bontempi
C.P.
,
Slatt
R.M.
,
2018
.
High-Resolution Stratigraphic Characterization of Natural Fracture Attributes in the Woodford Shale, Arbuckle Wilderness and US-77D Outcrops, Murray County, Oklahoma
.
Interpretation (1): SC29–SC41.
66.
Ghosh
S.
,
Busetti
S.
,
Slatt
R.M.
,
Analysis and prediction of stimulated reservoir volumes through hydraulic fracturing: Examples from western Arkoma Basin
,
Journal of Petroleum Science and Engineering
,
2019
,
182
(
2019b
)
106338
, .
67.
Satpathy
,
K.K.
,
Panaigrahi
,
S.
,
Mohanty
,
A.K.
,
Sahu
,
G.
,
Achary
,
M.S.
,
Bramha
,
S.N.
,
Padhi
,
R.K.
,
Samantara
,
M.K.
,
Selvanayagam
,
M.
and
Sarkar
,
S.K.
(
2013
)
Severe oxygen depletion in the shallow regions of the Bay of Bengal off Tamil Nadu Coast
.
Curr. Sci.
, v.
104
, pp.
1467
1469
.
68.
Weissert
,
H.
and
Erba
,
E.
(
2004
)
Volcanism, CO2 and palaeoclimate: A Late Jurassic-Early Cretaceous carbon and oxygen isotope record
.
Jour. Geol. Soc. London.
, v.
161
,
695
702
69.
Cohen
A.S.
,
Coe
A.L.
and
Kemp
D.B.
(
2007
)
The late Paleocene– early Eocene and Toarcian (Early Jurassic) carbon-isotope excursions: A comparison of their timescales, associated environmental changes, causes and consequences
.
Geol. Soc. (London) Jour.
, v.
164
, pp.
1093
1108
.
70.
Hesselbo
S.P.
,
Jenkyns
H.C.
,
Durate
L.V.
and
Oliveira
L.C.V.
(
2007
)
Carbon isototpe record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet
.
Sci. Lett.
, v.
253
,
455
470
.
71.
Dhote
,
P.
,
Bhan
,
U.
and
Verma
,
D.
,
2021
.
Genetic Model of Carbonatite Hosted Rare Earth Elements Mineralization from Ambadongar Carbonatite Complex, Deccan Volcanic Province, India
.
Ore Geology Reviews,
p.
104215
.
72.
Nandita
&
Uday
Bhan
2021
.
Middle Siwalik Charophyta from Mohand area, Dehradun Sub-Basin, NW Himalaya, India
.
Journal of the Palaeontological Society of India
, Volume
66
(
1
), June 30, 2021:
1
11
73.
Manju
Negi
,
Santosh K.
Rai
,
Sumit K.
Ghosh
,
Uday
Bhan
,
Saurabh
Singhal
2020
Characterization of the Detrital Zircon from the Lesser Himalayan Proterozoic siliciclastics
.
Himalayan Geology
, Vol.
41
(
1
), pp.
1
10
.
74.
Nandita
&
Uday
Bhan
2021
.
Middle Siwalik Charophyta from Mohand area, Dehradun Sub-Basin, NW Himalaya, India
.
Journal of the Palaeontological Society of India
, Volume
66
(
1
), June 30, 2021:
1
11
75.
S.
Ganguly
,
S.
Tiwari
,
U.
Bhan
,
S.
Mittal
,
S.
Rai
,
EF Osta Melting of Sea Ice Inexplicable for Recent Global Eustatic Sea Level Rise
,
Journal of Earth Science & Climatic Change
,
6
(
1
),
2015
.
This content is only available via PDF.
You do not currently have access to this content.