This study has employed Autoregressive Integrated Moving Average (ARIMA) model to analyze the time-series data of air pollutants at Chennai city in Tamil Nadu. Data on pollutants containing SO2, NO2 and PM10 for 12 months for four locations, Adayar, Anna Nagar, T.Nagar and Kilpauk are collected for the period 2010 to 2015. The stationary of the data is verified with the Augmented Dickey-Fuller test and null hypothesis. The best-suited order selection for prediction is done using Akaike Information Criterion (AIC). For the prediction of individual pollutants, dataset is broken into training and testing at a ratio of 66% and 33% respectively. The proposed model predicts the SO2 and NO2 with the least mean square error. The root mean squared error of PM10 prediction is high due to non-stationary.

1.
Abhilash
,
M. S. K.
,
Thakur
,
A.
,
Gupta
,
D.
, &
Sreevidya
,
B.
(
2018
).
Time series analysis of air pollution in bengaluru using arima model
. In
Ambient Communications and Computer Systems
(pp.
413
426
). Springer, Singapore.
2.
Kumar
,
R.
,
Kumar
,
P.
, &
Kumar
,
Y.
(
2020
).
Time series data prediction using iot and machine learning technique
.
Procedia Computer Science
,
167
,
373
381
.
3.
Sakarkar
,
G.
,
Pillai
,
S.
,
Rao
,
C. V.
,
Peshkar
,
A.
, &
Malewar
,
S.
(
2020
).
Comparative study of ambient air quality prediction system using machine learning to predict air quality in smart city
. In
Proceedings of International Conference on IoT Inclusive Life (ICIIL 2019), NITTTR Chandigarh, India
(pp.
175
182
). Springer, Singapore.
4.
Leong
,
W. C.
,
Kelani
,
R. O.
, &
Ahmad
,
Z.
(
2020
).
Prediction of air pollution index (API) using support vector machine (SVM
).
Journal of Environmental Chemical Engineering
,
8
(
3
),
103208
.
5.
Zeinalnezhad
,
M.
,
Chofreh
,
A. G.
,
Goni
,
F. A.
, &
Klemeš
,
J. J.
(
2020
).
Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System
.
Journal of Cleaner Production
,
261
,
121218
.
6.
Koo
,
J. W.
,
Wong
,
S. W.
,
Selvachandran
,
G.
, &
Long
,
H. V.
(
2020
).
Prediction of Air Pollution Index in Kuala Lumpur using fuzzy time series and statistical models
.
Air Quality, Atmosphere & Health
,
13
(
1
),
77
88
.
7.
Angelena
,
J. P.
,
Stanley Raj
,
A.
,
Viswanath
,
J.
, &
Muthuraj
,
D.
(
2021
).
Evaluation and forecasting of PM10 air pollution in Chennai district using Wavelets, ARIMA, and Neural Networks algorithms
.
Pollution
,
7
(
1
),
55
72
.
8.
Mishra
,
R. K.
,
Agarwal
,
A.
, &
Shukla
,
A.
(
2021
).
Predicting Ground Level PM2. 5 Concentration Over Delhi Using Landsat 8 Satellite Data
.
International Journal of Remote Sensing
,
42
(
3
),
827
838
.
9.
Sethi
,
J. K.
, &
Mittal
,
M.
(
2021
).
Prediction of Air Quality Index Using Hybrid Machine Learning Algorithm
. In
Advances in Information Communication Technology and Computing
(pp.
439
449
). Springer, Singapore.
10.
Jain
,
N.
,
Singh
,
S.
,
Datta
,
N.
, &
Dawn
,
S.
(
2021
).
Time Series Forecasting to Predict Pollutants of Air, Water and Noise Using Deep Learning Methods
. In
Intelligent System Design
(pp.
793
802
). Springer, Singapore.
11.
Keerthi
,
K.
,
Selvaraju
,
N.
, &
Varghese
,
L. A.
(
2020
).
Use of combined receptor modeling technique for prediction of possible sources of particulate pollution in Kozhikode, India
.
International Journal of Environmental Science and Technology
,
17
(
5
),
2623
2636
.
12.
Hosamane
,
S. N.
,
Prashanth
,
K. S.
, &
Virupakshi
,
A. S.
(
2020
, December).
Assessment and prediction of PM10 concentration using ARIMA
. In
Journal of Physics: Conference Series
(Vol.
1706
, No.
1
, p.
012132
). IOP Publishing.
13.
Kumari
,
N. A.
,
Kumar
,
K. A.
,
Raju
,
S. H. V.
,
Vasuki
,
H. R.
, &
Nikesh
,
M. P.
(
2020
, November).
Prediction of Air Quality in Industrial Area
. In
2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)
(pp.
193
198
). IEEE.
14.
Shishegaran
,
A.
,
Saeedi
,
M.
,
Kumar
,
A.
, &
Ghiasinejad
,
H.
(
2020
).
Prediction of air quality in Tehran by developing the nonlinear ensemble model
.
Journal of Cleaner Production
,
259
,
120825
.
15.
Islam
,
M. M.
,
Sharmin
,
M.
, &
Ahmed
,
F.
(
2020
).
Predicting air quality of Dhaka and Sylhet divisions in Bangladesh: a time series modeling approach
.
Air Quality, Atmosphere & Health
,
13
(
5
),
607
615
.
16.
Lizzie
,
S. H.
, &
Kumar
,
B. S.
Air Quality Prediction Using Time Series Analysis
. In
Intelligent Data Engineering and Analytics
(pp.
741
748
). Springer, Singapore.
17.
Abhilash
M.S.K.
,
Thakur
A.
,
Gupta
D.
,
Sreevidya
B.
(
2018
) Time Series Analysis of Air Pollution in Bengaluru Using ARIMA Model. In:
Perez
G.
,
Tiwari
S.
,
Trivedi
M.
,
Mishra
K.
(eds)
Ambient Communications and Computer Systems. Advances in Intelligent Systems and Computing
, (pp
413
426
)
Springer, Singapore
.
This content is only available via PDF.
You do not currently have access to this content.