A bipartie graph G(V0V1, E) is said to be Hamiltonian laceable, if there exists a uv H-path such that uV0 and vV1. A non bipartite graph G(V, E) is defined to be random hamiltonian laceable, if there is a u - v H-path ∀ u, vV and it is defined to be partial random hamiltonian laceable, if there is a u - v H-path ∀ u, vV thus d(u, v) = t, where t is either odd or even. Cayley graphs are special class of graphs that are suitable for designing interconnection networks. Hamiltonian laceability of families of Cayley graphs namely Knödel Graph and Cube connected complete graph are studied in this research article.

1.
Knödel
W.
,
New gossips and telephones
,
Discrete Mathematics
13
(
1975
),
95
.
2.
G.
Simmons
,
Almost all n-dimensional rectangular lattices are Hamilton laceable
,
Congr. Numer.
21
(
1978
)
103
108
.
3.
I.
Havel
,
On Hamiltonian circuits and spanning trees of hypercube
,
Cas. Pest. Mat.
109
(
1984
)
135
152
.
4.
Labahn
R.
,
Some minimum gossip graphs
,
Networks
23
(
1993
),
333
341
.
5.
Fraigniaud
P.
,
Peters
J.G.
,
Minimum Linear Gossip Graphs and Maximal Linear (Δ, k)-Gossip Graphs. Technical Report 94-06
,
School of Computing Science, Simon Fraser Univ
., (
1994
).
6.
Brian
Alspach
,
C. C.
Chen
,
Kevin
McAvancy
.,
On a class of Hamiltonian laceable 3-regular graphs
.
Discrete Mathematics
,
151
(
1
)(
1996
),
19
38
.
7.
M-C.
Heydemann
,
N.
Marlin
,
S.
Perennes
,
Cayley graphs with complete rotations, Technical report
,
Laboratoire de Recherche en Informatique (Orsay
), (
1997
). TR-1155, submitted for publication.
8.
Decker
T.
,
Monien
B.
,
Preis
R.
,
Towards optimal load balancing topologies, in
:
Proc. EUROPAR’2000, Lecture Notes in Computer Science
,
Springer Verlag
,
Berlin
, (
2000
).
9.
G.
Fertin
,
A.
Raspaud
,
H
Schroder
,
O.
Sykora
and
I.
Vrt’o
,
Diameter of the Knödel Graph
, in:
Proc. 26th Int. Workshop on Graph-Theoretic Concepts in Comp. Sci. (WG 2000
), (Eds.:
U.
Brandes
and
D.
Wagner
), vol.
1928
of
Lec. Notes in Comp. Sci.
,
Springer
,
Berlin
, (
2000
), pp.
149
160
.
10.
S.Y.
Hsieh
,
G.H.
Chen
,
C.W.
Ho
,
Hamiltonian-laceability of star graphs
,
Networks
36
(
2000
)
225
232
.
11.
C.H.
Tsai
,
J.J.M.
Tan
,
T.
Liang
and
L.H.
Hsu
,
Fault-tolerant Hamiltonian laceability of hypercubes
,
Information Processing Letters
83
(
6
), (
2002
)
301
306
.
12.
G.
Fertin
and
A.
Raspaud
,
A survey on Knödel graphs
,
Discrete Appl. Math.
137
(
2004
),
173
195
.
13.
G.B.
Oad
,
Diameter and Broadcast Time of the Knödel graph
, Masters thesis,
Concordia University
, (
2014
).
14.
Juan
Liu
and
Xindong
Zhang
,
Cube connected complete graph
,
IAENG International Journal of Applied Mathematics
44
:
3
, IJAM 44-30-3.
This content is only available via PDF.
You do not currently have access to this content.