A bipartie graph G(V0 ∪V1, E) is said to be Hamiltonian laceable, if there exists a u − v H-path such that u∈ V0 and v ∈ V1. A non bipartite graph G(V, E) is defined to be random hamiltonian laceable, if there is a u - v H-path ∀ u, v ∈ V and it is defined to be partial random hamiltonian laceable, if there is a u - v H-path ∀ u, v ∈ V thus d(u, v) = t, where t is either odd or even. Cayley graphs are special class of graphs that are suitable for designing interconnection networks. Hamiltonian laceability of families of Cayley graphs namely Knödel Graph and Cube connected complete graph are studied in this research article.
Topics
Graph theory
REFERENCES
1.
Knödel
W.
, New gossips and telephones
, Discrete Mathematics
13
(1975
), 95
.2.
G.
Simmons
, Almost all n-dimensional rectangular lattices are Hamilton laceable
, Congr. Numer.
21
(1978
) 103
–108
.3.
I.
Havel
, On Hamiltonian circuits and spanning trees of hypercube
, Cas. Pest. Mat.
109
(1984
) 135
–152
.4.
Labahn
R.
, Some minimum gossip graphs
, Networks
23
(1993
), 333
–341
.5.
Fraigniaud
P.
, Peters
J.G.
, Minimum Linear Gossip Graphs and Maximal Linear (Δ, k)-Gossip Graphs. Technical Report 94-06
, School of Computing Science, Simon Fraser Univ
., (1994
).6.
Brian
Alspach
, C. C.
Chen
, Kevin
McAvancy
., On a class of Hamiltonian laceable 3-regular graphs
. Discrete Mathematics
, 151
(1
)(1996
), 19
–38
.7.
M-C.
Heydemann
, N.
Marlin
, S.
Perennes
, Cayley graphs with complete rotations, Technical report
, Laboratoire de Recherche en Informatique (Orsay
), (1997
). TR-1155, submitted for publication.8.
Decker
T.
, Monien
B.
, Preis
R.
, Towards optimal load balancing topologies, in
: Proc. EUROPAR’2000, Lecture Notes in Computer Science
, Springer Verlag
, Berlin
, (2000
).9.
G.
Fertin
, A.
Raspaud
, H
Schroder
, O.
Sykora
and I.
Vrt’o
, Diameter of the Knödel Graph
, in: Proc. 26th Int. Workshop on Graph-Theoretic Concepts in Comp. Sci. (WG 2000
), (Eds.: U.
Brandes
and D.
Wagner
), vol. 1928
of Lec. Notes in Comp. Sci.
, Springer
, Berlin
, (2000
), pp. 149
–160
.10.
S.Y.
Hsieh
, G.H.
Chen
, C.W.
Ho
, Hamiltonian-laceability of star graphs
, Networks
36
(2000
) 225
–232
.11.
C.H.
Tsai
, J.J.M.
Tan
, T.
Liang
and L.H.
Hsu
, Fault-tolerant Hamiltonian laceability of hypercubes
, Information Processing Letters
83
(6
), (2002
) 301
–306
.12.
G.
Fertin
and A.
Raspaud
, A survey on Knödel graphs
, Discrete Appl. Math.
137
(2004
), 173
–195
.13.
G.B.
Oad
, Diameter and Broadcast Time of the Knödel graph
, Masters thesis, Concordia University
, (2014
).14.
Juan
Liu
and Xindong
Zhang
, Cube connected complete graph
, IAENG International Journal of Applied Mathematics
44
: 3
, IJAM 44-30-3.
This content is only available via PDF.
© 2022 Author(s).
2022
Author(s)
You do not currently have access to this content.