Churn prediction methods are widely used to anticipate customer churn from services provided by a company for some reasons. This study aims to develop an optimal churn prediction model based on customer data from a telecommunication company in Indonesia. The model development and evaluation processes are performed by following the Cross-Industry Standard Process for Data Mining (CRISP-DM), which consist of business understanding, data understanding, data preparation, modelling, and evaluation. Various combination of data preparation and modelling methods have been evaluated. The evaluation results show that the combination of feature selection and prediction model yields better results compared to prediction model without feature selection. The highest accuracy is achieved by Random Forrest at 97.82%, which is followed by Decision Tree at 97.06%, and Naive Bayes at 90.62%. This result indicates that a prediction model can be reliably used to predict customer churn in a telecommunication company.

1.
N.
Naga
and
P.
Prithvi
(
2016
).
Customer Churn Prediction Using Big Data Analytics.
2.
N.
Kamalraj
and
A.
Malathi
(
2013
).
A Survey on Churn Prediction Techniques in Communication Sector
.
Int. J. Comput. Appl.
, vol.
64
, no.
5
, pp.
39
42
. .
3.
E. P. K.
Orpa
,
E. F.
Ripanti
, and
T.
Tursina
(
2019
).
Model Prediksi Awal Masa Studi Mahasiswa Menggunakan Algoritma Decision Tree C4.5
.
J. Sist. dan Teknol. Inf.
, vol.
7
, no.
4
, p.
272
.
4.
A.
Hudaib
,
R.
Dannoun
,
O.
Harfoushi
,
R.
Obiedat
, and
H.
Faris
(
2015
).
Hybrid Data Mining Models for Predicting Customer Churn
.
Int. J. Commun. Netw. Syst. Sci.
, vol.
08
, no.
05
, pp.
91
96
.
5.
Y.
Huang
et al (
2015
).
Telco churn prediction with big data
.
Proc. ACM SIGMOD Int. Conf. Manag. Data
, vol.
2015-May
, pp.
607
618
.
6.
O.
Simeone
(
2018
).
A Very Brief Introduction to Machine Learning with Applications to Communication Systems
.
IEEE Trans. Cogn. Commun. Netw.
, vol.
4
, no.
4
, pp.
648
664
.
7.
S. F.
Sabbeh
(
2018
).
Machine-learning techniques for customer retention: A comparative study
.
Int. J. Adv. Comput. Sci. Appl.
, vol.
9
, no.
2
, pp.
273
281
.
8.
D. T.
Larose
and
C. D.
Larose
(
2015
).
Data Mining and Predictive Analytics.
Wiley Ser
., pp.
1
794
.
9.
M.
Rijnen
(
2018
).
Predicting Churn using Hybrid Supervised / Unsupervised Models.
10.
S. H.
Sastry
and
P. M. S. P.
Babu
(
2013
).
Implementation of CRISP Methodology for ERP Systems.
vol.
2
, no.
05
, pp.
203
217
. 1312.2065
11.
R.
Masoud
and
T. M.
Ahmed
(
2016
).
Using data mining in telecommunication industry: Customer’s churn prediction model
.
J. Theor. Appl. Inf. Technol.
, vol.
91
, no.
2
, pp.
322
328
.
12.
F.
Mart
,
L.
Contreras-ochando
,
P.
Flach
,
M.
Kull
,
N.
Lachiche
, and
Q.
Hern
(
2017
).
Context Aware Standard Process for Data Mining
. pp.
1
38
. 1709.09003
13.
R.
Govindaraju
,
T.
Simatupang
, and
T. A.
Samadhi
(
2018
).
Perancangan Sistem Prediksi Churn Pelanggan
.
Tek. Inform.
, vol.
9
, no.
1
, pp.
33
42
.
This content is only available via PDF.
You do not currently have access to this content.