The stability and free vibrations of layered shallow skew panels with different boundary conditions on the contour are analyzed. For a shallow curved orthotropic panel having the shape of a parallelogram in the plan, the equilibrium equations, physical and geometric relations are formed in an oblique basis associated with the geometry of the panel. The solution of the problems of stability and vibrations is performed in displacements by approximating the deflection function by Krylov basis functions, depending on the conditions of support on the panel contour. The influence of structural parameters on critical loads during compression and shear depending on the direction of action of tangential forces is numerically investigated and the oscillation frequencies at different angles of the skew of a shallow composite panel are determined. No influence of small deviations from the rectangular shape (skew angles less than 20 degrees) on the buckling characteristics and eigenfrequencies of shallow composite panels over the entire range of changes in their curvature was revealed. For large skew angles (more than 30 degrees), an increase in the curvature of shallow panels has a positive effect on their dynamic behavior – when the radius of curvature of the panel changes from 15 to 5 m, the critical values of axial and shear loads increase by more than 2.5 times, the eigenfrequency increases almost linearly by 3 times.

1.
V.V.
Vasiliev
,
R.M.
Jones
, L.I. Man Mechanics of Composite Structures.
CRC
.
Boca Raton
.
517
p. (
2017
).
2.
J.N.
Reddy
, Mechanics of laminated composite plates and shells. Theory and analysis, (
2nd ed
).
CRC
New York
,
831
p. (
2004
).
3.
N.S.
Azikov
,
A.V.
Zinin
,
Yu. V.
Gaidarzhi
,
J. Mach. Reliab.
50
.
5
.
430
437
. (
2021
).
4.
N.S.
Azikov
,
Mekh. Kompoz. Mater. Konstr.
10
.
1
.
133
152
. (
2004
).
5.
V.G.
Dmitriev
,
O.V.
Egorova
,
O.V.
Zhavoronok
, S.I., and
L.N.
Rabinskii
,
Russ. Aeronaut.
61
.
2
.
165
174
. (
2018
).
6.
Y.
Kiani
,
Aerosp. Science and Technol.
58
.
130467
9
. (
2016
).
7.
N.S.
Azikov
,
A.V.
Zinin
,
J. Mach. Reliab.
47
.
5
.
423
429
. (
2018
).
8.
S.
Valvano
,
E.
Carrera
,
Facta Univ., Ser.: Mech. Eng.
15
.
1
.
1
30
. (
2017
).
9.
C.V.
Srinivasa
,
Y.J.
Suresh
and
R.
Kumar
,
Int. J. Comput. Appl.
37
.
1
.
35
47
. (
2012
).
10.
S.
Haldar
,
S.
Pal
,
K.
Kalita
, R.
Int. J. of Marit. Eng.
161
.
A4
.
357
380
. (
2019
).
11.
A.U.
Nurimbetov
,
A.A.
Dudchenko
,
Struct. Mech. Eng. Const. and Build.
14
(
4
).
323
336
(in Russian). (
2018
).
12.
N.S.
Azikov
, and
Yu.V.
Gaidarzhi
,
Mekh. Kompoz. Mater. Konstr.
16
.
3
.
361
. (
2010
).
13.
C.
Karami
,
S.A.
Shahpari
, and
P.
Malekzadeh
,
Compos. Struct.
59
.
3
.
393
402
. (
2003
).
14.
A.
Maji
,
P.
Mahato
,
J. Therm. Compos. Mater.
089270572093076, pp.
1
44
(
2020
).
15.
S.
Chikkol
,
S.
Yelaburgi
,
P.
Wooday
,
Int. J. Adv. Struct. Eng.
6
(
1
),
1
11
. (
2014
).
16.
S.
Chikkol
,
P.
Wooday
,
S.
Yelaburg
,
J. Therm. Compos. Mater.
2
.
1-25
. (
2016
).
17.
D.
Chatterjee
,
A.
Ghosh
,
D.
Chakravorty
,
Materials Today: Proceedings.
45
(
61
).
4925
4930
. (
2021
).
18.
A.
Kumar
,
A.
Chakrabarti
,
M.
Ketkar
,
Latin Amer. J. Solids and Struct.
10
(
5
).
391
419
. (
2013
).
This content is only available via PDF.
You do not currently have access to this content.