In this paper, we propose a combination form of the fuzzy Sumudu transform and Adomain decomposition method to solve nonlinear Volterra-Fredholm fuzzy integro-differential equation (NVFFIDE) of the second kind. The result reveals that the proposed method is very efficient, simple and can be applied to application. Finally, the method is illustrated with example.

1.
G.
Adomian
.
A review of the decomposition method in applied mathematics
.
Journal Mathematics Anal App.
,
135
:
501
544
,
1988
.
2.
G.
Adomian
. Solving Frontier Problems of Physics. The Decompositon Method.
Kluver Academic Publishers
,
Boston
,
12
,
1994
.
3.
T.
Allahvirnaloo
,
S.
Abbasbandy
.
The Adomian decompositon method applied to fuzzy system of Fredholm integral equations of the second kind
.
Int. J. Uncertainty Fuzziness Knowl-Based Systems
,
10
:
101
110
,
2006
.
4.
Abdul
Rahman
N. A.,
M. Z.
Ahmad
.
Fuzzy Sumudu transform for solving fuzzy partial differential equations
.
J. Nonlinear Sci. Appl.
,
9
:
3226
3239
,
2016
.
5.
N. A. Abdul
Rahman
,
M. Z.
Ahmad
.
Solving Fuzzy Volterra Integral Equations via Fuzzy Sumudu Transform
.
Appl. Math. Comput. Intell.
,
6
:
19
28
,
2017
.
6.
S. S.
Behzadi
.
Solving Fuzzy Nonlinear Volterra-Fredholm Integral Equations by Using Homotopy Analysis and Adomian Decomposition Methods
.
International of Fuzzy Set Valued Analysis
,
35
:
13
pages,
2011
.
7.
Y.
Chalco-Cano
,
H.
Roman-Flores
.
On New Solutions of Fuzzy Differential Equations
.
Chaos, Solitons and Fractals
,
38
:
112
119
,
2008
.
8.
I. L.
El-Kalla
.
Convergence of the Adomian method applied to a class of nonlinear integral equations
.
Journal Applied Mathematics and Computing
,
21
:
327
376
,
2008
.
9.
M.
Friedman
,
M.
Ming
,
A.
Kandel
.
Numerical Solution of fuzzy Differential and Integral Equations
.
Fuzzy Sets and System
,
106
:
35
48
,
1999
.
10.
Georgieva
A.
:
Double Fuzzy Sumudu Transform to Solve Partial Volterra Fuzzy Integro-Differential Equations
,
Mathematics
,
8
,
692
, (
2020
).
11.
Georgieva
A.
:
Solving two-dimensional nonlinear fuzzy Volterra integral equations by homotopy analysis method
,
Demonstratio Mathematica
,
54
11
24
, (
2021
)
12.
A.
Georgieva
.
Solving two-dimensional nonlinear Volterra-Fredholm fuzzy integral equations by using Adomian decomposition method
.
Dynamic Systems and Applications
,
27
:
819
837
,
2018
.
13.
A.
Georgieva
,
A.
Alidema
.
Adomian decomposition method for solving two-dimensional nonlinear Volterra fuzzy integral equations
.
AIP Conference Proceedings.
2048
,
050009
,
2018
.
14.
A.
Georgieva
,
A.
Alidema
.
Convergence of homotopy perturbation method for solving of two-dimensional fuzzy Volterra functional integral equations
.
Advanced Computing in Industrial Mathematics, Studies in Computational Intelligence
,
793
:
129
145
,
2019
.
15.
A.
Georgieva
,
S.
Hristova
.
Homotopy Analysis Method to Solve Two-Dimensional Nonlinear Volterra-Fredholm Fuzzy Integral Equations
.
Fractal Fract.
,
4
,
9
2020
.
16.
A.
Georgieva
,
I.
Naydenova
.
Numerical solution of nonlinear Urisohn-Volterra fuzzy functional integral equations
.
AIP Conference Proceedings
,
1910
:
050010
-
1
-050010-8,
2017
.
17.
A.
Georgieva
,
I.
Naydenova
.
Application of homotopy analysis method for solving of two-dimensional linear Volterra fuzzy integral equations
.
AIP Conference Proceedings
,
2159
,
030012
,
2019
.
18.
A.
Georgieva
,
I.
Naydenova
.
Approximate solution of nonlinear mixed Volterra-Fredholm fuzzy integral equations using the Adomian method
.
AIP Conference Proceedings
2172
,
060005
,
2019
.
19.
R.
Goetschel
,
W.
Voxman
.
Elementary fuzzy calculus
,
Fuzzy Sets and Systems
,
18
:
31
43
,
1986
.
20.
L.
Hooshangian
.
Nonlinear Fuzzy Volterra Integro-differential Equation of N-th Order: Analytic Solution and Existence and Uniqueness of Solution
.
Int. J. Industrial Mathematics
,
11
,
1
,
2019
.
21.
A.
Jafarian
,
N. S.
Measoomy
,
S.
Tavan
.
A numerical scheme to solve fuzzy linear Volterra integral equations system
.
J. Appl. Math.
: article ID 216923, (
2012
)
22.
S. Min
Kang
,
Z.
Iqbal
,
M.
Habib
,
W.
Nazeer
.
Sumudu Decomposition Method for Solving Fuzzy Integro-Differential Equations
.
Axioms
,
74
:
2019
.
23.
M.
Puri
,
D.
Ralescu
.
Differential and fuzzy functions
.
Mathematics Analysis and Applications
91
:
552
558
,
1983
.
24.
C.
Wu
,
Z.
Gong
.
On Henstock integral of fuzzy-number-valued functions(I)
.
Fuzzy Sets and Systems
,
120
:
523
532
,
2001
.
25.
G. K.
Watugala
.
The Sumudu transform for functions of two variables
.
Math. Eng. Ind.
,
8
:
293
302
,
2002
.
26.
C.
Wu
,
C.
Wu
.
The supremum and infimum of these to fuzzy-numbers and its applications
,
J. Math. Anal. Appl.
,
210
:
499
511
,
1997
.
This content is only available via PDF.
You do not currently have access to this content.