In this paper we study the 3D system with Hamiltonian
describing trapped ionic system in the quadrapole field with a superposition of rationally symmetric hexapole and octopole fields for meromorphic integrability. We use the Lyapunov and Ziglin-Morales-Ruiz-Ramis’s classical methods and some new results from the theory of algebraic numbers.
1.
M.
Benkhali
,
J.
Kharbach
,
I. E.
Fakkousy
,
W.
Chatar
,
A.
Rezzouk
, and
M.
Ouazzani-Jamil
, “
Painleve analysis and integrability of the trapped ionic system
,”
Phys. Lett. A
382
,
2515
2525
(
2018
).
2.
J.
Morales-Ruiz
,
Differential Galois Theory and Non-integrability of Hamiltonian Systems
(
Birkhäuser
.,
1999
).
3.
O.
Christov
and
G.
Georgiev
, “
Non-integrability of some higher-order painleve equations in the sense of liouville
,”
SIGMA 11
045
,
21
(
2015
).
4.
A.
Baider
and
R. C.
Churchill
, “
On monodromy groups of second-order fuchsian equations
,”
SIAM J. Math. Anal.
21
,
1642
1652
(
1990
).
5.
A.
Berger
, “
On linear independence of trigonometric numbers, carpathian
,”
Carpathian Journal of Mathematics.
34
,
157
166
(
2018
).
6.
A.
Lyapunov
, “
On certain property of the differential equations of the problem of motion of a heavy rigid body having a fixed point
,”
Soobsch. Kharkov Math. Obscht.
2
, 4, 1894,
123
140
(
1954
).
7.
E. G. C.
Poole
,
Introduction to the Theory of Linear Differential Equations
(
Oxford
,
At The Clarendon Press
.,
1936
).
8.
J.
Morales-Ruiz
,
J.
Ramis
, and
C.
Simó
, “
Integrability of hamiltonian systems and differential galois groups of higher variational equations
,”
Ann Scient Ec Norm Sup
40
,
845
884
(
2007
).
9.
J.
Morales-Ruiz
, “
Picard –vessiot theory and integrability
Journal of Geometry and Physics
87
,
314
343
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.