Agriculture plays a critical role in the economy of many countries. Pesticide and herbicide solutions make the farm field disinfect the pest, rats, and other living organisms that destroy the goods. Doing all these processes manually takes lots of time and requires several workers to work in the fields. Moreover, close contact with pesticide and herbicide solutions can disturb many organs' functionality in the human body and cause nerve damage and chronic diseases for farmers. This paper proposes an Unmanned Aerial Vehicle (UAV) with an adjustable angle of the sprayer to lift the heavy load (up to five kilograms) for pesticides/herbicides. The UAV decreases the farmers' contact with toxic substances and increases the farms' productivity. It also has a built-in GPS and Surveillance camera for the farmers to monitor the farm precisely. With a unique foldable design, farmers can carry it around easily. A UAV with four propellers (Quadcopter) has been designed and successfully tested during this project. Based on the testing results, the spraying time with the UAV has improved by about 83.4% compared with the manual process. The farmers can safely and quickly use the UAV to disinfect the farm field with the proposed solution.

1.
U. R.
Mogili
and
B. B. V. L.
Deepak
, “
Review on Application of Drone Systems in Precision Agriculture
,”
Procedia Comput. Sci.
, vol.
133
, pp.
502
509
, Jan.
2018
, doi: .
2.
L. T.
Phong
,
I. J. M.
de Boer
, and
H. M. J.
Udo
, “
Life cycle assessment of food production in integrated agriculture-aquaculture systems of the Mekong Delta
,”
Livest. Sci.
, vol.
139
, no.
1–2
, pp.
80
90
, Jul.
2011
, doi: .
3.
M.
Kumar
,
A. N.
Yadav
,
R.
Saxena
,
D.
Paul
, and
R. S.
Tomar
, “
Biodiversity of pesticides degrading microbial communities and their environmental impact
,”
Biocatal. Agric. Biotechnol.
, vol.
31
, p.
101883
, Jan.
2021
, doi: .
4.
S.
Patel
and
S.
Sangeeta
, “
Pesticides as the drivers of neuropsychotic diseases, cancers, and teratogenicity among agro-workers as well as general public
,”
Environ. Sci. Pollut. Res.
2018 261, vol.
26
, no.
1
, pp.
91
100
, Nov.
2018
, doi: .
5.
O.
Alam
 et al, “
Genome Analysis Traces Regional Dispersal of Rice in Taiwan and Southeast Asia
,”
Mol. Biol. Evol.
, Jul.
2021
, doi: .
6.
D.
Yallappa
,
M.
Veerangouda
,
D.
Maski
,
V.
Palled
, and
M.
Bheemanna
, “
Development and evaluation of drone mounted sprayer for pesticide applications to crops
,”
GHTC 2017 - IEEE Glob. Humanit. Technol. Conf. Proc.
, vol.
2017
-January, pp.
1
7
, Dec.
2017
, doi: .
7.
J.
Iqbal
,
R.
Xu
,
S.
Sun
, and
C.
Li
, “
Simulation of an Autonomous Mobile Robot for LiDAR-Based In-Field Phenotyping and Navigation
,”
Robot.
2020, Vol. 9, Page 46, vol.
9
, no.
2
, p.
46
, Jun.
2020
, doi: .
8.
J. J.
López
and
M.
Mulero-Pázmány
, “
Drones for Conservation in Protected Areas: Present and Future
,”
Drones
2019, Vol. 3, Page 10, vol.
3
, no.
1
, p.
10
, Jan.
2019
, doi: .
9.
S.
Sabikan
, “
Implementation of Open-Source for Outdoor Multirotors Helicopter
,”
Eng. Technol. Open Access J.
, vol.
1
, no.
1
,
2018
, doi: .
10.
S.
Hajare
,
M.
Waje
,
M.
Kalbande
, and
P.
Dakhole
, “
DESIGN AND MODELLING OF QUADCOPTER FOR PESTICIDE SPRAYING
.”
11.
V. P. and
M. B. D.
Yallappa
,
M.
Veerangouda
,
D.
Maski
, “
Development and evaluation of drone mounted sprayer for pesticide applications to crops
,” in
development and evaluation of drone mounted sprayer for pesticide applications to crops
,
2017
, pp.
1
7
, doi: .
12.
P.
Jitoko
,
E.
Kama
,
U.
Mehta
, and
A.
Chand
, “
Vision Based Self-Guided Quadcopter Landing on Moving Platform During Fault Detection
,”
Int. J. Intell. Commun. Comput. Networks
, vol.
02
, no.
01
, May
2021
, doi: .
13.
M.
Bachtiar
,
F.
Ardilla
,
M. F.
Hasbi
,
I. K.
Wibowo
PID Control System on Brushless DC Motor for Quadcopter Balance
,”,
Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi
, vol.
3
https://ejournal.unitomo.ac.id/index.php/inform/article/view/3999 (accessed Sep. 19,
2021
).
14.
Y. T.
Shin
and
Y. K.
Teh
, “
Design analysis and considerations of power efficient electronic speed controller for small-scale quadcopter unmanned aerial vehicle
,”
2018 IEEE 8th Annu. Comput. Commun. Work. Conf. CCWC 2018
, vol.
2018
-January, pp.
773
776
, Feb.
2018
, doi: .
15.
M.
Hoppe
,
M.
Burger
,
A.
Schmidt
, and
T.
Kosch
, “
Dronos: A flexible open-source prototyping framework for interactive drone routines
,”
ACM Int. Conf. Proceeding Ser.
, Nov.
2019
, doi: .
16.
M.
DURSUN
and
İ.
ÇUHADAR
, “
Secure Video Streaming Implementation for Unmanned Air Vehicle (UAV) Data Link with Raspberry Pi 3 over https
,”
Bilişim Teknol. Derg.
, vol.
11
, no.
1
, pp.
23
28
, Jan.
2018
, doi: .
17.
S.
Benhadhria
,
M.
Mansouri
,
A.
Benkhlifa
,
I.
Gharbi
, and
N.
Jlili
, “
VAGADRONE: Intelligent and Fully Automatic Drone Based on Raspberry Pi and Android
,”
Appl. Sci. 2021
, Vol. 11, Page 3153, vol.
11
, no.
7
, p.
3153
, Apr.
2021
, doi: .
18.
H.
Qays
,
A.
Salman
, and
B. Baki
Jum
, “
Autonomous Quadcopter Delivery System
.”
19.
V.
Alexandrov
,
I.
Rezkov
, and
D.
Shatov
, “
Identification of the quadcopter vertical translation dynamics
,”
2020 28th Mediterr. Conf. Control Autom. MED 2020
, pp.
363
368
, Sep.
2020
, doi: .
20.
C.
Ferro
,
R.
Grassi
,
C.
Seclì
, and
P.
Maggiore
, “
Additive Manufacturing Offers New Opportunities in UAV Research
,”
Procedia CIRP
, vol.
41
, pp.
1004
1010
, Jan.
2016
, doi: .
21.
C. V.
Jacob
,
N.
Subramanya
,
M. S.
Quamar
, and
B.
Prasad
, “
Fabrication and Qualification Studies of Aluminum Fuel Tank for Experimental UAV
,”
Mater. Today Proc.
, vol.
5
, no.
5
, pp.
13514
13520
, Jan.
2018
, doi: .
22.
H.
Guo
,
M.
Li
,
P.
Sun
,
C.
Zhao
,
W.
Zuo
, and
X.
Li
, “
Lightweight and maintainable rotary-wing UAV frame from configurable design to detailed design
:,” 10.1177/16878140211034999, vol.
13
, no.
7
, pp.
1
10
, Jul. 2021, doi: .
23.
K. M.
Thu
and
A. I.
Gavrilov
, “
Designing and Modeling of Quadcopter Control System Using L1 Adaptive Control
,”
Procedia Comput. Sci.
, vol.
103
, pp.
528
535
, Jan.
2017
, doi: .
24.
A.
Battiston
,
I.
Sharf
, and
M.
Nahon
, “
Attitude estimation for collision recovery of a quadcopter unmanned aerial vehicle
:,” 10.1177/0278364919867397, vol.
38
, no.
10–11
, pp.
1286
1306
, Aug.
2019
, doi: .
25.
E. G.
Prague
, “
QUADCOPTER FLIGHT MECHANICS MODEL AND CONTROL ALGORITHMS
,”
2016
.
26.
D.
Ho
,
J.
Linder
,
G.
Hendeby
, and
M.
Enqvist
, “
Mass estimation of a quadcopter using IMU data
,” p. 9781509044955, doi: .
This content is only available via PDF.
You do not currently have access to this content.