The objective of this article is to identify the Regional Climate Models (RCM) which is able to represent the characteristics of rainfall in the wettest state in Malaysia. This is done by evaluating the performance of seven RCM, generated by Coordinated Regional Climate Downscaling Experiment (CORDEX)-Southeast Asia (SEACLID), on a 25x25km grid scale in simulating the rainfall amount over nine catchments in the area. Observed data of the nine catchments were obtained from the corresponding rainfall recording stations and has been used for performance evaluation of the considered RCMs outputs using several statistical validation tests. In addition, trends of several extreme rainfall indices as defined by ETCCDI (Expert Team on Climate Change Detection and Indices) were analyzed and compared between the models. The trend analysis in this study served two purposes, which are for model comparison and to identify any possible extreme rainfall trend in the area. The result showed that although the performance of the models varied according to the validation tests applied, the IPSL-CM5A-LR (RegCM4) is so far the best model to be used for climate change impact study for future projections in Kelantan. In this regard, for local-scale climate projections, IPSL-CM5A-LR (RegCM4) can be used to assess the impact of potential extreme weather events in the future for mitigation purpose.

1.
F.
Giorgi
,
C.
Jones
and
G.
Asrar
,
WMO Bulletin
53
,
175
183
(
2008
).
2.
S.E.
Endris
,
P.
Omondi
,
S.
Jain
,
C.
Lennard
,
B.
Hewitson
,
L.
Chang'a
,
J.
Awange
,
A.
Dosio
,
P.
Ketiem
and
G.
Nikulin
.
Journal of Climate
26
,
8453
8475
(
2013
).
3.
A.A.
Akinsanola
and
K.O.
Ogunjobi
,
Environmental Earth Science
76
,
366
(
2017
).
4.
S.S.
Kong
and
J.
Sentian
,
International Journal of Engineering Technology Science and Research
2
,
25
44
. (
2015
).
5.
K.
Mogaji
,
K.
Abdullah
and
H.S.
Lim
,
Modern Applied Science
7
,
72
97
(
2013
).
6.
N.S.
Dlamini
,
M.R.
Kamal
,
M.A.
Soom
,
M.S.F.
Mohd
,
A.F.
Abdullah
and
L.S.
Hin
,
Water
9
,
226
(
2017
).
7.
M.Z.M.
Amin
,
A.
Ercan
,
K.
Ishida
,
M.L.
Kavvas
,
Z.Q. Chen.and J.
Su-Hyung
,
Water
11
,
1798
(
2019
).
8.
S.V.
Vooren
,
B.V.
Schaeybroeck
,
J.
Nyssen
,
M.V.
Ginderachter
and
P.
Termonia
,
International Journal of Climatology
39
,
2569
2586
(
2019
).
9.
W.T.
Dibaba
,
K.
Miegel
, and
T.A.
Demissie
,
Dynamics of Atmospheres and Oceans
87
,
101104
(
2019
).
10.
G.
Dong-Lin
,
S.
Jian-Qi
and
Y.
En-Tao
,
Atmospheric and Oceanic Science Letters
11
,
219
227
(
2018
).
11.
R. N.
Hoffman
,
Sid.
Boukabara
,
V. K.
Kumar
,
K.
Garrett
,
S.P. F.
Casey
and
R.
Atlas
.
Monthly Weather Review
145
,
1427
1435
(
2017
).
12.
X.M.
Mu
,
X.
Zhang
,
P.
Gao
and
F.
Wang
,
Journal of China Hydrology
30
,
47
51
(
2010
).
13.
T.
Razavi
,
H.
Switzman
,
A.
Arain
, and
P.
Coulibaly
,
Climate Risk Management
13
,
43
63
(
2016
).
14.
S.
Supari
,
F.
Tangang
,
L.
Juneng
, and
E.
Aldrian
,
International Journal of Climatology
37
,
1979
1997
(
2017
).
15.
Y.
Hong
and
S.
Ying
,
Advances in Climate Change Research
9
,
218
226
(
2018
).
16.
M.L.
Tan
,
K.C.
Tan
,
V.P.
Chua
and
N.W.
Chan
,
Water
9
,
57
(
2017
).
17.
F.
Tangang
,
R.
Farzanmanesh
,
A.
Mirzaei
,
S.
Supari
,
E.
Salimun
,
A.F.
Jamaluddin
and
L.
Juneng
,
International Journal of Climatology
37
,
696
716
(
2017
).
18.
19.
A.N.M.
Yatim
,
M.T.
Latif
and
F.
Ahamad
,
Adv. Atmos. Sci.
36
,
1355
1370
(
2019
).
20.
R.R.E.
Vernimmen
,
A.
Hooijer
,
Mamenun
,
E.
Aldrian
and
A.I.J.M.
van Dijk
,
Hydrology and Earth System Sciences
16
,
133
146
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.