Wind energy is a noteworthy alternate energy in times of energy crisis. An accurate wind speed forecasting model are essential in determining the suitable location for wind energy harvesting. However, the intermittency and nonlinearity of a wind speed make it difficult to obtain an accurate prediction and may cause several operational challenges to grid interfaced the wind energy system. In this study, the time series model and artificial neural network (ANN) model was applied on the daily wind speed data in Senai and Mersing, Johor to forecast future wind speed series. For the time series model, the daily wind speed data was initially been modelled using theARIMA model. However, due to the presence of heteroscedastic effect in the residuals of ARIMA model, GARCH model was introduced to handle the nonlinearity criteria. On the other hand,the Multilayer Perceptron (MLP)model which is in the class of feed-forward ANN was developed with different configurations based on selected hyperparameters. The MLP model configuration with the lowest RMSE value was selected as the best MLP model. A comparison has been made between the ARIMA- GARCH model and theMLPmodel. Results indicate that the MLP model was found to outperform the ARIMA-GARCH model by providing the lowest value of root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in both training and testing data sets. Thus, the artificial neural network can be concluded as the best method to provide a good forecasting model in predicting the daily wind speed data.

1.
L. Chenand X.
Lai
, “
Comparison between ARIMA and ANN models used in short-term wind speed forecasting
”,
in 2011 Asia-Pacific Power and Energy Engineering Conference, (IEEE, 2011
), pp.
1
4
.
2.
A.Albaniand M. Z.
Ibrahim
,
Energies
,
10
(
3
),
307
328
(
2017
).
3.
R.
Sarkar
,
S.
Julai
,
S.
Hossain
,
W. T.
Chong
,
andM.
Rahman
,
Mathematical Problems in Engineering.
2019
.
4.
N. C.
De Freitas
,
M. P. D. S.
Silva
,
andM. S.
Sakamoto
,
International Journal of Engineering Research and Application
,
8
(
1
),
4
9
(
2018
).
5.
E.
Grigonytė
, and
E.
Butkevičiūtė
,
Energetika
,
62
,
1
2
(
2016
).
6.
K.
Yunus
,
T.
Thiringer
, and
P.
Chen
,
IEEE Transactions on Power Systems
,
31
(
4
),
2546
2556
(
2015
).
7.
T.
Brahimi
,
F.
Alhebshi
,
H.
Alnabilsi
,
A.
Bensenouci
, and
M.
Rahman
,
Procedia Computer Science.
163
,
41
48
(
2019
).
8.
Y. P.
Faniband
and
S. M.
Shaahid
, “
Forecasting Wind Speed using Artificial Neural Networks–A Case Study of a Potential Location of Saudi Arabia
in Proceedings of the E3S Web of Conferences, (EDP Sciences, 2020
), pp.
1
4
.
9.
P.J.
Zucatelli
,
E.G.S.
Nascimento
,
G.Y.R.
Aylas
,
N.B.P.
Souza
,
Y.K.L.
Kitagawa
,
A.A.B.
Santos
,
A.M.G.
Arce
,
andD.M.
Moreira
,
Heliyon
,
5
(
5
)(
2019
).
10.
B. S. Çorbaand P.
Kasap
,
American Journal of Engineering Research,
7
(
11
),
240
250
(
2018
).
11.
A.
Arzu
,
S. S.
Kutty
,
M. R.
Ahmed
, and
M. G.
Khan
, “
Wind speed forecasting using regression, time series and neural network models: a case study of Kiribati
”,
in Australasian Fluid Mechanics Conference (Australasian Fluid Mechanics Society, Australia
,
2018
), pp.
1
4
.
12.
J.
Yan
,
H.
Guoqing
,
P.
Xinyan
, and
L.
Yongle
,
Journal of Southwest Jiaotong University
,
51
(
4
),
663
670
(
2016
).
13.
N. H.
Hussin
,
F.
Yusof
,
S. M.
Norrulashikin
, and
A. R.
Jamaludin
,
Pertanika Journal of Science & Technology
,
29
(
1
),
31
58
(
2021
).
14.
S.
Ismail
,
A. Shabriand R.
Samsudin
,
Hydrology and Earth System Sciences
,
16
,
4417
4433
(
2012
).
15.
G. M.
Ljung
, and
G. E.
Box
,
Biometrika.
65
(
2
),
297
303
(
1978
).
16.
T.
Bollerslev
,
Journal of econometrics
,
31
(
3
),
307
327
(
1986
).
17.
S. R.
Yaziz
,
N. A.
Azizan
,
R.
Zakaria
,
M. H.
Ahmad
, “
The performance of hybrid ARIMA-GARCH modeling in forecasting gold price
”, in
20th International Congress on Modelling and Simulation (Adelaide, 2013
),pp.
1
6
.
18.
I. L.
Kane
and
F.
Yusof
,
Modern Applied Science
,
7
(
12
),
78
(
2013
).
19.
H.
Chen
,
Q.
Wan
,
F.
Li
, and
Y.
Wang
, “
GARCH in mean type models for wind power forecasting
”, in
Proceedings of the 2013 (IEEE Power & Energy Society General Meeting2013
). pp.
1
5
.
20.
A. F.
Antor
, and
E. D.
Wollega
, “
Comparison of Machine Learning Algorithms for Wind Speed Prediction
”,
in 5th NA International Conference on Industrial Engineering and Operations Management
(Detroit, USA,
2020
), pp.
857
866
.
21.
C. M.
Bishop
, Neural networks for pattern recognition. (
Oxford university press
,
1995
).
22.
T.
Masters
, Practical neural network recipes in C++. (
Morgan Kaufmann
,
1993
).
23.
J. J. M.
Moreno
,
Psicothema.
23
(
2
),
322
329
(
2011
).
24.
G.
Panchal
,
A.
Ganatra
,
Y. P.
Kosta
, and
D.
Panchal
,
International Journal of Computer Theory and Engineering.
3
(
2
):
332
337
(
2011
).
25.
H.
Apaydin
,
H.
Feizi
,
M. T.
Sattari
,
M. S.
Colak
,
S.
Shamshirband
, and
K. W.
Chau
,
Water.
12
(
5
),
1500
(
2020
).
26.
J.
Brownlee
, “
Deep learning for time series forecasting: predict the future with MLPs, CNNs and LSTMs in Python
”,
Machine Learning Mastery
, (
2018
).
27.
J.
Jiao
,
MATEC Web of Conferences
,
232
,
03013
(
2020
).
28.
P. K.
Singh
,
N.
Singh
, and
R.
Negi
,
Ambient Communications and Computer Systems,
209
220
(
2019
).
29.
A. S.
Temür
,
M.
Akgün
, and
G.
Temür
,
Journal of Business Economics and Management
,
20
(
5
),
920
938
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.