The accuracy of electricity load demand forecasting is essential for avoiding energy waste and overuse. Hence, this paper aims to model the forecast electricity load demand by combining Empirical Mode Decomposition (EMD) with Group Method of Data Handling (GMDH) model. The proposed methodology works in three steps: it decomposes the original load data series into several Intrinsic Model Functions (IMFs) and one residual component, enables individual forecasting of each IMF and the residual using the GMDH model by using the Partial Autocorrelation Function (PACF) as the input variable, and aggregates all the forecasted values to yield the final prediction for electricity load demand. To compare the performance, another model is considered namely the combination of EMD with the Artificial Neural Network (EMD-ANN). The empirical result from the performance evaluation concluded that EMD-GMDH outperforms the EMD-ANN as well as the GMDH model without decomposing the time series.

1.
R.
Abdel-Aal
, M .Elhadidy,
S.
Shaahid
,
Renewable Energy
,
34
(
7
),
1686
1699
(
2009
).
2.
A.M.
Awajan
,
Italian Journal of Pure and Applied Mathematics
,
42
,
301
323
(
2019
).
3.
G.
Bandyopodhyay
,
Journal of Advanced Management Science
,
4
(
2
),
117
121
(
2016
).
4.
U.C.
Buyuksahin
,
S.
Ertekin
,
Neurocomputing
,
361
,
151
163
(
2019
).
5.
A.G.
Ivakhnenko
,
IEEE Trans, Syst., Man Cybern. SMCI-I
:
364
378
(
1971
).
6.
N.E.
Huang
,
Z.
Shen
,
S.R.
Long
,
M.C.
Wu
,
H.H.
Shih
,
Q.
Zheng
,
N.
Yen
,
C.C.
Tung
,
H.H.
Liu
, H.H.,
Proc. R. Soc. London
454
(
1971
).
7.
N.
Iqbal
,
K.
Bakhsh
,
A.
Maqbool
,
A.A.
Shohab
,
Journal of Agriculture and Social Science
2
,
120
122
(
1988
).
8.
Z.
Ismail
,
F.
Jamaluddin
,
F.
Jamaludin
,
Asian Journal of Mathematics & Statistics
,
1
(
3
),
139
149
(
2008
).
9.
K.
Kandananond
,
Energies
4
(
8
),
1246
1257
(
2011
).
10.
O.
Kisi
,
L.
Latifo
,
F.
Latifo
,
Water Resource Management
,
28
,
4045
4057
(
2014
).
11.
D.
Kofinas
,
N.
Mellios
,
E.
Papageorgiou
,
C.
Laspidou
,
Procedia Engineering
,
89
,
1023
1030
(
2014
).
12.
R.
Samsudin
,
S.
Puteh
,
A.
Shabri
,
Hydrology and Earth System Sciences Discussions
,
7
(
3
),
3691
3731
(
2010
).
13.
A.
Shabri
,
AIP Conference Proceeding
,
1643
,
192
200
(
2015
).
14.
K.
Sheela
,
S.
Deepa
,
Mathematical Problem in Engineering
, (
2013
).
15.
G.
Teng
,
J.
Xiao
,
Y.
He
,
T.
Zheng
,
C.
He
,
Energy Science and Engineering
5
(
5
),
302
317
(
2017
).
16.
N.A.
Yahya
,
R.
Samsudin
,
I.
Darmawan
,
A.
SHabri
,
S.
Kasim
,
International Journal of Integrated Engineering
10
(
6
),
31
36
(
2018
).
17.
L.M.
Yan
,
O.H.
Choon
Neural Networks Forecasting on Electricity in Malaysia”
,
Universiti Sains Malaysia
(
2009
).
18.
G.
Zhang
,
B.E.
Patuwo
,
M.Y.
Hu
,
International Journal of Forecasting
14
,
35
62
(
1998
).
19.
P.G.
Zhang
,
Neurocomputing
,
50
,
159
175
(
2003
).
20.
Z.
Zhu
,
Y.
Sun
,
H.
Li
,
IEEE International Conference on Control and Automation, ICCA
,
00
,
1044
1047
(
2008
).
This content is only available via PDF.
You do not currently have access to this content.