The aim of this research is to evaluate the presence of sodium chloride (NaCl) and polydimethylsiloxane (PDMS) on the properties of polylactic acid (PLA). The PLA, porous PLA (NPLA) and porous PLA with PDMS (DPLA) was PLA was first dissolved in chloroform under mechanical stirring for 7 minutes before being fabricated using the salt leaching method. The dissolved PLA was then mixed with sodium chloride (NaCl). The chloroform was then evaporated by leaving the PLA and NaCl mixture at room temperature for 24 hours. The NaCl content was then removed by washing the solidified film with tap water. Porous PLA will result from the removal of NaCl content. PLA's mechanical and morphological properties have been studied in relation to its NaCl content. On the other hand, using the same procedure, DPLA is produced by using a solvent immersion method whereas the PDMS and porous PLA are put into a vacuum chamber to reinforce the PDMS into PLA pores. The presence content of NaCl showed for tensile properties decreased by 19 MPa and elongation at break decreased by 43 MPa of the reduction trend while presence of PDMS showed increased trend with 200% for modulus of elasticity than porous PLA but still lower than PLA that 850%. Meanwhile, the presence of NaCl and PDMS was found to increase Young's modulus. At the tensile fractured surface of the neat PLA, the micrograph revealed a smooth surface. However, the effect of the salt leaching method resulted in a porous PLA due to the presence of NaCl, as evidenced by the pores visible in the micrographs. The amount of NaCl in the PLA affects the number of pores and the number of interconnected pores with uniform morphology and evenly distributed pores are affected by the NaCl content.

1.
Xiao
,
L.
,
Wang
,
B.
,
Yang
,
G.
, &
Gauthier
,
M.
, In
Biomedical Science, Engineering and Technology, InTech
(
2012
).
2.
Mani
,
M.
,
Subash
,
C.
,
Nagarajan
,
G.
Applied Thermal Engineering
, (
2009
).
3.
Agamuthu
,
P.
, &
Faizura
,
P. N.
Waste Management & Research
, (
2005
).
4.
Drumright
,
R. E.
,
Gruber
,
P.N.
,
Biodegradability of degradable plastic waste
, (
2000
).
5.
Kido
,
Y.
,
Sakai
,
R.
,
John
,
B.
,
Okamoto
,
M.
, &
Seppala
,
J.V.
,
International Journal of Molecular Sciences
, (
2014
).
6.
Bae
J. H.
,
Joo
,
J. H.
,
Lee
,
Y. J.
,
Han
,
M.S.
, &
Kim
,
S.H.
,
Fibers and Polymers
, (
2015
).
7.
Ou
X
,
Cakmak
M.
,
Polymer
(
2008
)
49
:
5344
5352
8.
Williams
CK
,
Hillmyer
MA
Polym Rev
(
2008
)
48
:
1
10
9.
Steffen G.
Scholz
,
Robert J.
Howlett
,
Rossi
Setchi
.,
Sustainable design and Manufacturing 2020
:
Proceedings of the 7th International Conference on Sustainable Design and Manufacturing
(
2020
)
534
.
10.
Anderson
KS
,
Schreck
KM
,
Hillmyer
MA
,
Polym Rev
(
2008
)
48
:
85
108
11.
Rodwogin
MD
,
Spanjers
CS
,
Leighton
C.
,
Hillmyer
MA
,
ACS Nano
(
2010
)
4
:
725
732
12.
Ho
C-H
,
Jung
G-W
,
Lee
Y-D
,
Polymer
(
2010
)
51
:
1639
1647
13.
Reeve
MS
,
McCarthy
SP
,
Gross
RA
,
Macromolecules
(
1993
)
26
:
888
894
14.
Ren
J.
,
Zhang
ZH
,
Feng
Y.
,
Li
JB
,
Yuan
WZ
,
J Appl Polym Sci
(
2010
)
118
:
2650
2658
15.
Antunes
JC
,
Oliveira
JM
,
Reis
RL
,
Soria
JM
,
Gomez-Ribelles
JL
,
Mano
JF
,
J Biomed Mater Res A
(
2010
)
94A
:
856
869
16.
Mecerreyes
D.
,
Dubois
P.
,
Jerome
R.
,
Hedrick
JL
,
Hawker
CJ
,
J Polym Sci Part A Polym Chem
(
1999
)
37
:
1923
1930
17.
Thi
TH
,
Matsusaki
M.
,
Akashi
M.
,
Biomacromolecules
(
2009
)
10
:
766
772
18.
Guo
BL
,
Finne-Wistrand
A.
,
Albertsson
AC
,
Biomacromolecules
(
2010
)
11
:
855
863
19.
Ojha
U.
,
Kulkarni
P.
,
Singh
J.
,
Faust
R.
,
J Polym Sci Part A Polym Chem
(
2009
)
47
:
3490
3505
20.
Masutani
K.
,
Kawabata
S.
,
Aoki
T.
,
Kimura
Y.
,
Polym Int
(
2010
)
59
:
1526
1530
21.
Zhang
JM
,
Duan
YX
,
Domb
AJ
,
Ozaki
Y.
,
Macromolecules
, (
2010
)
43
:
4240
4246
22.
Theryo
G.
,
Jing
F.
,
Pitet
LM
,
Hillmyer
MA
,
Macromolecules
, (
2010
)
43
:
7394
7397
23.
Ouchi
T.
,
Miyazaki
H.
,
Arimura
H.
,
Tasaka
F.
,
Hamada
A.
,
Ohya
Y.
,
J Polym Sci Part A Polym Chem
(
2002
)
40
:
1218
1225
24.
Andronova
N.
,
Albertsson
A-C
,
Biomacromolecules
(
2006
)
7
:
1489
1495
25.
Wanamaker
CL
,
O'Leary
LE
,
Lynd
NA
,
Hillmyer
MA
,
Tolman
WB
,
Biomacromolecules
(
2007
)
8
:
3634
3640
26.
Ljungberg
N.
,
Wesslen
B.
,
Biomacromolecules
(
2005
)
6
:
1789
1796
27.
Cho
,
Y. S.
,
Kim
,
B. S.
, &
Cho
,
Y.S.
,
SLUP (salt leaching using powder)
, (
2014
).
28.
Sakai
,
R.
,
John
,
B.
,
Okamoto
&
Goodridge
,
R.
,
Fabrication of Polylactide-Based Biodegradable Thermoset
, (
2013
).
29.
Y.,
Youk
,
J. H.
,
Lee
,
S. W.
,
Min
,
B. M.
,
Lee
,
S. J.
, &
Park
,
W. H.
,
Preparation of porous ultra fine PGA fibers
, (
2006
).
30.
Narayan
,
R.
,
Carbon Footprint of Bioplastics Using Biocarbon Content Analysis and Life Cycle Assessment
, (
2011
).
31.
Ramezanzadeh
,
B.
,
Moradian
,
S.
,
Tahmasebi
,
N.
, &
Khosravi
,
A.
,
Studying the role of polysiloxane additives and nano-SiO2 on the mechanical properties of a typical acrylic/melamine clearcoat
,
Progress in organic coatings
, (
2011
).
32.
Lai
,
S. M.
,
Wu
,
S. H.
,
Lin
,
G. G.
, &
Don
,
T. M.
.,
Unusual mechanical properties of melt-blended poly(lactic acid)(PLA)/clay nanocomposites
,
European Polymer Journal
, (
2014
).
33.
Schneider
,
J. S.
,
Design of biobased and biodegradable-compostable engineered plastics based on poly(lactide
),
Michigan State University
,
USA
. (
2016
).
34.
Farah
,
S.
,
Anderson
,
D. G.
, &
Langer
,
R.
,
Physical and Mechanical Properties of PLA, and their Function in Widespread Application
, (
2016
).
35.
Zubir
,
N. A.
, &
Ismail
,
A. F.
,
Effect of Sintering Temperature on The Morphology and Mechanical Properties of PTFE membranes as a Base Substrate For Proton Exchange Membranes
, (
2002
).
36.
Iannace
,
S.
,
Di Maio
,
E.
, &
Nicolais
,
L.
,
Preparation and Characterization of Polyurethanes Porous Membranes by Particulate-leaching Method
, (
2001
).
37.
Yuan
,
H.
,
Liu
,
Z.
, &
Ren
,
J.
, Preparation,
Characterization, and Foaming Behaviour of Polylactic Acid blend
, (
2009
).
38.
Nagarajan
,
V.
,
Mohanty
,
A. K.
, &
Misra
,
M.
,
Perspective on Polylactic acid (PLA) Based Sustainable Materials for Durable Application : Focus on Toughness and heat Resistance
, (
2016
).
39.
Sadiasa
,
Alexander
,
Thi Hiep
Nguyen
, and
Byong-Taek
Lee
., ‘
In Vitro and In Vivo Evaluation of Porous PCL- PLLA 3D Polymer Scaffolds Fabricated Via Salt Leaching Method for Bone Tissue Engineering Application
’, (
2014
).
40.
Zimmerman
,
D. L.
, &
Jones
,
R. W.
SEM Analysis of Polymeric Mechanical Failures in Polyetherimide
.
International Journal of Polymeric Materials
, (
2016
).
This content is only available via PDF.
You do not currently have access to this content.