Rummaging conduct of social animals has consistently involved investigation for the improvement of enhancement calculations. Creepy crawly Monkey Optimization is a worldwide streamlining calculation motivated by Fission-Fusion social development of insect monkey throughout their looking out conduct. Spider Monkey Optimization stunningly portrays two crucial ideas of multitude insight: self-association and division of work. Spider Monkey Optimization has acquired notoriety as of late as a large number perception based mostly calculation and is utilized to many more designing streamlining points. In this part it presents the Spider Monkey Optimization calculation intimately. A mathematical illustration of Spider Monkey Optimization methodology has moreover given for a superior comprehension of its functioning.

1.
S. I.
Ayon
,
M. A. H.
Akhand
,
S. A.
Shahriyar
, and
N.
Siddique
,
“Spider Monkey Optimization to Solve Traveling Salesman Problem
,”
2nd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2019, Apr.
2019
, doi: .
2.
J. C.
Bansal
,
H.
Sharma
,
S. S.
Jadon
, and
M.
Clerc
,
“Spider Monkey Optimization algorithm for numerical optimization
,”
Memetic Comput.
, Vol.
6
, No.
1
, pp.
31
47
,
2014
, doi: .
3.
M.
Clerc
and
M.
Clerc Standard
,
“Standard Particle Swarm Optimisation
,”
Accessed: Aug. 30
,
2021
. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00764996.
4.
K.
Gupta
,
K.
Deep
, and
J. C.
Bansal
,
“Improving the Local Search Ability of Spider Monkey Optimization Algorithm Using Quadratic Approximation for Unconstrained Optimization
,”
Comput. Intell.
, Vol.
33
, No.
2
, pp.
210
240
,
2017
, doi: .
5.
A.
Agrawal
,
P.
Farswan
,
V.
Agrawal
,
D. C.
Tiwari
, and
J. C.
Bansal
,
“On the hybridization of spider monkey optimization and genetic algorithms
,”
Adv. Intell. Syst. Comput.
, Vol.
546
, pp.
185
196
,
2017
, doi: .
6.
H. J.
Liao
,
C. H.
Richard Lin
,
Y. C.
Lin
, and
K. Y.
Tung
,
“Intrusion detection system: A comprehensive review
,”
J. Netw. Comput. Appl.
, Vol.
36
, No.
1
, pp.
16
24
, Jan.
2013
, doi: .
7.
P. M.
, “
Bacterial Foraging Optimization
,”
Int. J. Swarm Intell. Res.
, Vol.
1
, No.
1
, pp.
1
16
, Jan.
2010
, doi: .
8.
“An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06 | Request PDF.” https://www.researchgate.net/publication/255638348_An_Idea_Based_on_Honey_Bee_Swarm_for_Numerical_Optimization_Technical_Report_-_TR06 (accessed Aug. 30, 2021).
9.
D. S.
Kumar
and
R.
Poonia
, “Self-Adaptive Spider Monkey Optimization Algorithm for Engineering Optimization Problems.” Accessed: Aug. 30, 2021. [Online]. Available: https://www.academia.edu/11564826/Self_Adaptive_Spider_Monkey_Optimization_Algorithm_for_Engineering_Optimization_Problems.
10.
M.
Ehteram
,
H.
Karami
, and
S.
Farzin
,
“Reducing Irrigation Deficiencies Based Optimizing Model for Multi-Reservoir Systems Utilizing Spider Monkey Algorithm
,”
Water Resour. Manag.
, Vol.
32
, No.
7
, pp.
2315
2334
, May
2018
, doi: .
11.
C.
ID
and
L.
ME
,
“Fission-fusion populations
,”
Curr. Biol.
, Vol.
19
, No.
15, Aug
.
2009
, doi: .
12.
A. L.
Baden
,
T. H.
Webster
, and
J. M.
Kamilar
,
“Resource seasonality and reproduction predict fission-fusion dynamics in black-and-white ruffed lemurs (Varecia variegata
),”
Am. J. Primatol.
, Vol.
78
, No.
2
, pp.
256
279
, Feb.
2016
, doi: .
13.
D. N, G.
DA
,
K.
AS
, and G. N,
“Facial expressions of emotion states and their neuronal correlates in mice
,”
Science
, Vol.
368
, No.
6486, Apr
.
2020
, doi: .
14.
J.
Chand
et al, “
Spider Monkey Optimization algorithm for numerical optimization
,” vol.
6
, pp.
31
47
,
2014
, doi: .
15.
N.A.
Singh
,
V.
Bhardwaj
,
C.
Ravi
,
N.
Ramesh
,
A.K.A.
Mandal
, and
Z.A.
Khan
,
EGCG nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease
,
Front. Aging Neurosci.
10
, (
2018
).
16.
S.
Garg
,
K.
Kaur
,
S.
Batra
,
G.S.
Aujla
,
G.
Morgan
,
N.
Kumar
,
A.Y.
Zomaya
, and
R.
Ranjan
,
En-ABC: An ensemble artificial bee colony based anomaly detection scheme for cloud environment
,
J. Parallel Distrib. Comput.
135
,
219
(
2020
).
17.
H.
Cao
,
S.
Wu
,
G.S.
Aujla
,
Q.
Wang
,
L.
Yang
, and
H.
Zhu
,
Dynamic Embedding and Quality of Service-Driven Adjustment for Cloud Networks
,
IEEE Trans. Ind. Informatics
16
,
1406
(
2020
)
18.
N.
Mittal
,
U.
Singh
,
R.
Salgotra
, and
B.S.
Sohi
,
A boolean spider monkey optimization based energy efficient clustering approach for WSNs
,
Wirel. Networks
24
,
2093
(
2018
)
This content is only available via PDF.
You do not currently have access to this content.