The “Trim loss issue" (TLP) perhaps uttermost intriguing issues with regards to structure of advancement research It targets to determine the best cutting example of several things of varying lengths from a load of regular size measurable to meet the clients’ wants while reducing waste due to trim misfortune. The subsequent numerical pattern is exceptionally nonconvex in nature went with a few imperatives with additional limitations of paired factors. This evades the utilization of straight advancement techniques. In this review work we utilize synergetic differential advancement (SDE) for the arrangement of this sort of issues. Four theoretical yet significant instances of trim misfortune issue emerging are used in the paper industry the test. The exploratory outcomes contrasted and those of different procedures show the capability of the SDE to take care of the issue. This paper includes introduction which explains a complete terminologies related to cutting stock problem, in literature review section we discuss various mathematical model which already exist in literature, in next section we discuss about mathematical formulation to reduce wastage.

1.
J.
Erjavec
,
M.
Gradisǎr
, and
P.
Trkman
,
“Renovation of the cutting stock process
,”
Int. J. Prod. Res.
, Vol.
47
, No.
14
, pp.
3979
3996
,
2009
, doi: .
2.
P.
Iqbal
and
P. S. S.
Uduman
,
“Mathematical Modeling and Performance Analysis of Stock Preparation Unit in Paper Plant Industry Using Genetic Algorithm Mathematical Modeling and Performance Analysis of Stock Preparation Unit in Paper Plant Industry Using Genetic Algorithm
,” vol.
34
, no.
August
, pp.
1629
1638
,
2015
.
3.
M. A.
Rodríguez
and
A.
Vecchietti
,
“Enterprise optimization for solving an assignment and trim-loss non-convex problem
,”
Comput. Chem. Eng.
, Vol.
32
, No.
11
, pp.
2812
2822
,
2008
, doi: .
4.
H.
Dyckhoff
,
“A typology of cutting and packing problems
,”
Eur. J. Oper. Res.
, Vol.
44
, No.
2
, pp.
145
159
,
1990
, doi: .
5.
I.
Harjunkoski
,
T.
Westerlund
, and
R.
Pörn
,
“Numerical and environmental considerations on a complex industrial mixed integer non-linear programming (MINLP) problem
,”
Comput. Chem. Eng.
, Vol.
23
, No.
10
, pp.
1545
1561
,
1999
, doi: .
6.
I.
Harjunkoski
,
T.
Westerlund
,
J.
Isaksson
, and
H.
Skrifvars
,
“Different formulations for solving trim loss problems in a paper-converting mill with ILP
,”
Comput. Chem. Eng.
, Vol.
20
, No.
SUPPL.1
,
1996
, doi: .
7.
I.
Harjunkoski
,
T.
Westerlund
,
R.
Pörn
, and
H.
Skrifvars
,
“Different transformations for solving non-convex trim-loss problems by MINLP
,”
Eur. J. Oper. Res.
, Vol.
105
, No.
3
, pp.
594
603
,
1998
, doi: .
8.
P.
Trkman
and
M.
Gradisar
,
“One-dimensional cutting stock optimization in consecutive time periods
,”
Eur. J. Oper. Res.
, Vol.
179
, No.
2
, pp.
291
301
,
2007
, doi: .
9.
R. E.
Johnston
and
E.
Sadinlija
,
“A new model for complete solutions to one-dimensional cutting stock problems
,”
Eur. J. Oper. Res.
, Vol.
153
, No.
1
, pp.
176
183
,
2004
, doi: .
10.
M. H.
Correia
,
J. F.
Oliveira
, and
S. S.
Ferreira
,
“Reel and sheet cutting at a paper mill
,”
Comput. Oper. Res.
, Vol.
31
, No.
8
, pp.
1223
1243
,
2004
, doi: .
11.
R.
Khan
et al,
“A mathematical model for reduction of trim loss in cutting reels at a make-to-order paper mill
,”
Appl. Sci.
, Vol.
10
, No.
15
,
2020
, doi: .
12.
A. C.
Cherri
,
M. N.
Arenales
,
H. H.
Yanasse
,
K. C.
Poldi
, and
A. C. Gonçalves
Vianna
,
“The one- dimensional cutting stock problem with usable leftovers - A survey
,”
Eur. J. Oper. Res.
, Vol.
236
, No.
2
, pp.
395
402
,
2014
, doi: .
13.
R.
Andrade
,
E. G.
Birgin
, and
R.
Morabito
,
“Two-stage two-dimensional guillotine cutting stock problems with usable leftover
,”
Int. Trans. Oper. Res.
, Vol.
23
, No.
1–2
, pp.
121
145
,
2016
, doi: .
14.
G. A.
Ogunranti
and
A. E.
Oluleye
,
“Minimizing waste (off-cuts) using cutting stock model: The case of one dimensional cutting stock problem in wood working industry
,”
J. Ind. Eng. Manag.
, Vol.
9
, No.
3
, pp.
834
859
,
2016
, doi: .
15.
A. I.
Hinxman
,
“The trim-loss and assortment problems: A survey
,”
Eur. J. Oper. Res.
, Vol.
5
, No.
1
, pp.
8
18
,
1980
, doi: .
16.
A. C.
Cherri
,
M. N.
Arenales
, and
H. H.
Yanasse
,
“The usable leftover one-dimensional cutting stock problem-a priority-in-use heuristic
,”
Int. Trans. Oper. Res.
, Vol.
20
, No.
2
, pp.
189
199
,
2013
, doi: .
17.
M.
Ali
,
C. W.
Ahn
, and
M.
Pant
,
“Trim loss optimization by an improved differential evolution
,”
Math. Probl. Eng.
, Vol.
2013
, No.
i
,
2013
, doi: .
18.
N.
Mittal
,
U.
Singh
, and
B. S.
Sohi
,
“A novel energy efficient stable clustering approach for wireless sensor networks
,”
Wirel. Pers. Commun.
, Vol.
95
, No.
3
, pp.
2947
2971
,
2017
.
19.
G.
Kumar
et al,
“Cation distribution: A key to ascertain the magnetic interactions in a cobalt substituted Mg-Mn nanoferrite matrix
,”
Phys. Chem. Chem. Phys.
, Vol.
19
, No.
25
, pp.
16669
16680
,
2017
, doi: .
20.
Lalita
,
A. P. Singh
, and
R. K.
Sharma
,
“Synthesis and characterization of graft copolymers of chitosan with NIPAM and binary monomers for removal of Cr(VI), Cu(II) and Fe(II) metal ions from aqueous solutions
,”
Int. J. Biol. Macromol.
, Vol.
99
, pp.
409
426
,
2017
, doi: .
21.
J. S.
Chohan
,
R.
Singh
, and
K. S.
Boparai
,
“Post-processing of ABS Replicas with Vapour Smoothing for Investment Casting Applications
,”
Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.
, Feb.
2020
, doi: .
This content is only available via PDF.
You do not currently have access to this content.