Heating-cooling treatment (HCT), also known as heat-moisture treatment (HMT), is a physical treatment to alter starch's physicochemical properties without destroying its granular structure. Heat-treated flour can be used in many food processing applications, such as preparing a cake, bread, and noodles. This research evaluated the characteristics of gluten-free bread prepared from the heating-cooling treatment sweet potato flour (HCT-SPF). Sweet potato flour (SPF) was treated by heating-cooling treatment (HCT). The sweet potato flour was adjusted to 30% (wet basis) moisture content and heated for six h at 85°C, 95°C, and 105°C. The physicochemical properties included moisture, ash, protein, fat, dietary fibre, specific volume, color, and texture of gluten-free bread made from HCT-SPF were then evaluated. The results showed that the solubility and swelling power of SPF decreased, and the baking expansion of SPF increased gradually as the heating temperature of HCT was increased. In addition, gluten-free bread made from HCT-SPF showed higher specific volume and lowered lightness and hardness values than those prepared from native SPF. However, the use of HCT-SPF did not influence the proximate composition, springiness, and cohesiveness of the gluten-free bread. Furthermore, the gluten-free bread made from HCT-SPF at a higher temperature (105°C) showed a high bread volume and softer texture.

1.
A.
Mahmudatussa'adah
,
Pangan
23
(
1
),
53
64
(
2014
).
2.
F. F.
Shih
,
V. D.
Truong
, and
K. W.
Daigle
,
J. Food Qual.
29
(
1
),
97
107
(
2006
).
3.
H.-J.
Chung
,
Q.
Liu
, and
R.
Hoover
,
Carbohydr. Polym.
75
(
3
),
436
447
(
2009
).
4.
Z.
Maache-Rezzoug
,
I.
Zarguili
,
C.
Loisel
,
D.
Queveau
, and
A.
Buléon
,
Carbohydr. Polym.
74
(
4
),
802
812
(
2008
).
5.
R.
Hoover
and
T.
Vasanthan
,
Carbohydr. Res.
252(C
),
33
53
(
1994
).
6.
Q.
Sun
,
T.
Wang
,
L.
Xiong
, and
Y.
Zhao
,
Food Chem.
141
(
2
),
853
857
(
2013
).
7.
T. T.
Huang
,
D. N.
Zhou
,
Z. Y.
Jin
,
X. M.
Xu
, and
H. Q.
Chen
,
Food Hydrocoll.
54
,
202
210
(
2016
).
8.
I. C.
Pérez
,
T. H.
Mu
,
M.
Zhang
, and
L. L.
Ji
,
Food Sci. Technol. Int.
23
(
8
),
708
715
(
2017
).
9.
K.
Marston
,
H.
Khouryieh
, and
F.
Aramouni
,
LWT - Food Sci. Technol.
65
(
2016
),
637
644
(
2016
).
10.
V. A.
Lase
,
E.
Julianti*
, and
L. Masniary
Lubis
,
J. Teknol. dan Ind. Pangan
24
(
1
),
89
96
(
2013
).
11.
A. S.
Trejo-González
,
A. G.
Loyo-González
, and
M. R.
Munguía-Mazariegos
,
Int. Food Res. J.
21
(
4
),
1683
1688
(
2014
).
12.
R. Y.
Lin
,
Gluten-free bread : characterization and development of pre- and post-baked gluten free bread
(
2014
). at <https://dspace.mit.edu/bitstream/handle/1721.1/89971/890129655-MIT.pdf?sequence=2&isAllowed=y>
13.
E. F.
Tethool
,
A.
Jading
, and
B.
Santoso
,
Food Sci. Qual. Manag.
10
,
1
11
(
2012
).
14.
A.
Setya
,
J. Apl. Teknol. Pangan
4
(
1
),
17
21
(
2015
).
15.
BSN
,
Standar nasional Indonesia
. SNI 01-2891-1992. Cara uji makanan dan minuman (
1992
).
16.
F. M.
Makinde
and
R.
Akinoso
,
Int. Food Res. J.
21
(
4
),
1635
1640
(
2014
).
17.
H.
Heo
,
Y. K.
Lee
, and
Y. H.
Chang
,
Emirates J. Food Agric.
29
(
6
),
463
469
(
2017
).
18.
A. Ridwan
Ariyantoro
,
B. Sigit
Amanto
, and
Kiswuri
,
IOP Conf. Ser. Earth Environ. Sci.
518
(
1
),
012067
(
2020
).
19.
T.
Lin
and
C.
Fernández-Fraguas
,
LWT
127
(March),
109325
(
2020
).
20.
W. S.
Ratnayake
and
D. S.
Jackson
,
J. Agric. Food Chem.
54
(
10
),
3712
3716
(
2006
).
21.
J.
Korus
,
M.
Witczak
,
R.
Ziobro
, and
L.
Juszczak
,
Eur. Food Res. Technol.
240
(
6
),
1135
1143
(
2015
).
22.
E.
Purlis
,
J. Food Eng.
99
(
3
),
239
249
(
2010
).
23.
D.
Sabanis
,
D.
Lebesi
, and
C.
Tzia
,
LWT - Food Sci. Technol.
42
(
8
),
1380
1389
(
2009
).
24.
C.
Onyango
,
C.
Mutungi
,
G.
Unbehend
, and
M. G.
Lindhauer
,
LWT - Food Sci. Technol.
44
(
3
),
681
686
(
2011
).
25.
D. F.
McCarthy
,
E.
Gallagher
,
T. R.
Gormley
,
T. J.
Schober
, and
E. K.
Arendt
,
Int. J. Innov. Res. Sci. Eng. Technol.
03
(
09
),
16041
16048
(
2014
).
This content is only available via PDF.
You do not currently have access to this content.