Cassava (Manihot esculenta) and pumpkin (Cucurbita moschata) were abundant local food ingredients in Indonesia. A cultivar of beta carotene-rich cassava has been developed by genetical engineering technique and became suitable as raw material for modified beta carotene-rich cassava flour (BCR-mocaf) which was expected to be used as an ingredient of various functional food products, i.e crackers. Nevertheless, as a source of carbohydrates, BCR-mocaf had some problems related to its nutritional content, so adding other ingredients with better nutritional content was recommended to improve the quality of the product. This study aims to evaluate the physicochemical and antioxidant properties of crackers produced from the composite flour made from BCR-mocaf and different parts of pumpkin flour. The antioxidant properties of three cracker formulations prepared from the composite flour were evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Control crackers were prepared from wheat flour and tapioca flour with no addition of either mocaf or pumpkin flour. Furthermore, the crackers were analyzed using Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Chromameter, and Universal Testing Machine (UTM) to determine their physical characteristic. The results showed that the combination of pumpkin seed flour and BCR-mocaf produced crackers with the best antioxidant activity of 35.59% at a concentration of 800 ppm. Meanwhile, the highest total phenol (283.10 mg GAE/g) was owned by crackers that prepared from pumpkin rinds flour and BCR-mocaf. Moreover, the FTIR results indicated a possible presence of ketones, carboxylic acids and carbohydrates functional groups. The SEM analysis showed the presence of a porous structure of the crackers. This study revealed the potency of the pumpkin rind and seed as a food ingredient in the food industry.

1.
Sholichah
,
N.
Indrianti
,
L.E.
Yulianti
,
A.
Sarifudin
,
W.
Kiatponglarp
.
African J. Food Agric. Nutr. Dev.
20
.
16905
16921
(
2020
).
2.
N.
Jacobo-Valenzuela
,
M. R.
Maróstica-Junior
,
J. de J.
Zazueta-Morales
,
J. A.
Gallegos-Infante
.
Food Res. Int.
44
.
2587
2593
(
2011
).
3.
S. E.
Quintana
,
R. M.
Marsiglia
,
D.
Machacon
,
E.
Torregroza
,
L. A.
Garcia-Zapateiro
,
Contemp. Eng. Sci.
11
.
1003
1012
(
2018
).
4.
K. K.
Srivastava
and
R.
Kumar
,
Indian J Clin Biochem.
30
.
3
10
(
2015
).
5.
J.
Deng
,
W.
Cheng
,
G.
Yang
,
Food Chem.
125
.
1430
1435
(
2011
).
6.
A. W.
Indrianingsih
,
W.
Apriyana
,
K.
Nisa
,
V. T.
Rosyida
,
S. N
Hayati
,
C.
Darsih
,
A.
Kusumaningrum
,
Food Res.
3
,
484
490
(
2019
).
7.
A. W.
Indrianingsih
,
M. P.
Wulanjati
,
A.
Windarsih
,
D. K.
Bhattacharjya
,
T.
Suzuki
,
T.
Katayama
,
Biocatal. Agric. Biotechnol.
33
.
101995
(
2021
).
8.
A. W.
Indrianingsih
,
S.
Tachibana
,
K.
Itoh
.
Procedia Environ. Sci.
28
.
639
648
(
2015
).
9.
P. T.
Akonor
,
N. T.
Dziedzoave
,
E. S.
Buckman
,
E. Mireku
Essel
,
F.
Lavoe
,
K. I.
Tomlins
,
Food Sci. Nutr.
5
.
564
569
(
2017
).
10.
P. P. S.
Nakhon
,
K.
Jangchud
,
A.
Jangchud
,
W.
Prinyawiwatkul
,
Int. J. Food Sci. Technol.
52
.
2436
2444
(
2017
).
11.
G. M.
Campbell
and
E.
Mougeot
,
Trends Food Sci. Technol.
10
.,
283
296
(
1999
).
12.
T.
Kaewmanee
,
T. T.
Karrila
,
S.
Benjakul
,
Int. Food Res. J.
22
.
2078
2087
(
2015
).
13.
D.
Gumolung
.
Fullerene Journal of Chemistry.
2
.
69
71
(
2017
).
14.
A. W.
Indrianingsih
,
V. T.
Rosyida
,
W.
Apriyana
,
S. N.
Hayati
,
K.
Nisa
,
C.
Darsih
,
A.
Kusumaningrum
,
D.
Ratih
,
N.
Indirayati
.
IOP Conf. Ser. Earth Environ. Sci.
251
.
012021
(
2019
).
15.
I. I.
Koleva
,
T. A.
Van Beek
,
J. P. H.
Linssen
,
A.
De Groot
,
L. N.
Evstatieva
.
Phytochem. Anal.
13
.
8
17
(
2002
).
16.
S.
Enneb
,
S.
Drine
,
M.
Bagues
,
T.
Triki
,
F.
Boussora
,
F.
Guasmi
,
K.
Nagaz
,
A.
Ferchichi
.
South African J. Bot.
130
.
165
171
(
2020
).
17.
N. E. Rocha-Guzman J. A.
Gallegos-Infante
,
C. I.
Delgado-Nieblas
,
J. J.
Zazueta-Morales
,
R. F. Gonzalez-
Laredo
,
V.
Cervantes-Cardoza
,
F.
Martinez-Bustos
,
E.
Aguilar-Palazuelos
Int. J. Food Eng.
8
.
1
13
(
2012
).
18.
C. A.
Rice-Evans
,
N. J.
Miller
,
G.
Paganga
, “
Structure-antioxidant activity relationships of flavonoids and phenolic acids
,”
Free Radic. Biol. Med.
20
.
933
956
(
1996
).
19.
L. E.
Rodriguez-Saona
and
M. E.
Allendorf
,
Annu Rev Food Sci Technol.
2
.
467
483
(
2011
).
20.
L. M. J.
de Carvalho
,
P. B.
Gomes
,
R. L. O.
Godoy
,
S.
Pacheco
,
P. H. F. do
Monte
,
J. L. V.
Carvalho
,
M. R.
Nutti
,
A. C. L.
Neves
,
A. C. R. A.
Vieira
,
S. R. R.
Ramos
,
Food Res. Int.
47
.
337
340
(
2012
).
21.
M.
Saeleaw
and
G.
Schleining
.
J. Food Eng.
103
,
229
236
(
2011
).
22.
A.
Kobayashi
and
H.
Kawamura
.
J. Glob. Tour. Res.
1
.
35
40
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.