The bio-wastes from the industries, households, and markets are often underutilized and usually accumulate at landfills. Though these fillers are inferior in properties compared to synthetic fillers, they can still be used as potential reinforcements for the polymer composites requiring low to moderate strength and stiffness. This article intends to discuss the influence of various types of fillers, physical characteristics such as size, aspect ratio of the filler, etc.,and % weight of the fillers on the thermal and mechanical properties of the composites reinforced with these fillers. It also aims to bring in the interfacial adhesion characteristics of the filler with the polymer matrix. The pioneering of bio-based composite materials in the automobile industry brings forth an impact on cost-effective and highly reliable materials. Biowaste from the industries, households, and markets was used as bio-fibersthat are used in the form of threads or also as fillers. This paper investigated the governing of bio-fillers effects on the mechanical and thermal properties of composite materials. The existence of bio-fillers exhibited improvement in both the strength and thermal stability of the composite materials. Filler influencewas based on weight percentage distinguished by the change in the strength of the composite materials due to the bonding and voids present in the composite materials that also affected the thermal firmness. This paper also discusses the characterization of fibers in terms of their constituents, strength, and thermal stability. These fillers influence the composite materials based on the different categories,such as (i) preparation process of fillers (ii) size of the fillers (iii) bonding of the fillers towards the matrix (iv)weight percentage of fillers, and (v) strength and thermal properties of fillers. This study also deals with the effect of hybridization of the composite materials by the presence of the fillers into the fiber-reinforced composite materials. Hence, the forthcoming study discusses the preparation of filler added composite materials, their mechanical and thermal properties of the composites.

1.
F.
Ribeiro
,
J.
Sena-Cruz
, and
A. P.
Vassilopoulos
, “
Tension-tension fatigue behavior of hybrid glass/carbon and carbon/carbon composites
,”
Int. J. Fatigue
, vol.
146
, p.
106143
,
2021
.
2.
H. A.
Aisyah
et al, “
A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites
,”
Polymers (Basel)
., vol.
13
, no.
3
, p.
471
, Feb.
2021
, doi: .
3.
N. M.
Nurazzi
,
A.
Khalina
,
S. M.
Sapuan
,
R. A.
Ilyas
,
S. A.
Rafiqah
, and
Z. M.
Hanafee
, “
Thermal properties of treated sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites
,”
J. Mater. Res. Technol.
, vol.
9
, no.
2
, pp.
1606
1618
,
2020
, doi: .
4.
S.
Alsubari
,
M. Y. M.
Zuhri
,
S. M.
Sapuan
,
M. R.
Ishak
,
R. A.
Ilyas
, and
M. R. M.
Asyraf
, “
Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties
,”
Polymers (Basel)
., vol.
13
, no.
3
,
2021
, doi: .
5.
A. A. B.
Omran
et al, “
Micro-and Nanocellulose in Polymer Composite Materials: A Review
,”
Polymers (Basel)
., vol.
13
, no.
2
, p.
231
, Jan.
2021
, doi: .
6.
R. A.
Ilyas
et al, “
Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications
,”
Polymers (Basel)
., vol.
13
, no.
8
, p.
1326
, Apr.
2021
, doi: .
7.
M.
Suriani
,
S.
Sapuan
,
C.
Ruzaidi
,
D.
Nair
, and
R.
Ilyas
, “
Flammability, morphological and mechanical properties of sugar palm fiber/polyester yarn-reinforced epoxy hybrid biocomposites with magnesium hydroxide flame retardant filler
,”
Text. Res. J.
, p.
004051752110086
, May
2021
, doi: .
8.
M. J.
Suriani
,
F. S. M.
Radzi
,
R. A.
Ilyas
,
M.
Petrů
,
S. M.
Sapuan
, and
C. M.
Ruzaidi
, “
Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites
,”
Polymers (Basel)
., vol.
13
, no.
8
, p.
1282
, Apr.
2021
, doi: .
9.
M. J.
Suriani
et al, “
Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and Flammability Properties
,”
Polymers (Basel)
., vol.
13
, no.
9
, p.
1532
, May
2021
, doi: .
10.
M. J.
Suriani
,
H. Z.
Rapi
,
R. A.
Ilyas
,
M.
Petrů
, and
S. M.
Sapuan
, “
Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review
,”
Polymers (Basel)
., vol.
13
, no.
8
, p.
1323
, Apr.
2021
, doi: .
11.
Z.
Belfkira
,
H.
Mounir
, and
A.
El Marjani
, “
Structural optimization of a horizontal axis wind turbine blade made from new hybrid composites with kenaf fibers
,”
Compos. Struct
., vol.
260
, p.
113252
,
2021
.
12.
B.
Gangil
,
L.
Ranakoti
,
S.
Verma
,
T.
Singh
, and
S.
Kumar
, “
Natural and Synthetic Fibers for Hybrid Composites
,”
Hybrid Fiber Compos. Mater. Manuf. Process Eng
., pp.
1
15
,
2020
.
13.
J.
Carruthers
,
A.
Carruthers
, and
S.
Humphrey
, “
Introduction to fillers
,”
Plast. Reconstr. Surg.
, vol.
136
, no.
5
, pp.
120S
131S
,
2015
.
14.
S. M.
Zebarjad
,
M.
Tahani
, and
S. A.
Sajjadi
, “
Influence of filler particles on deformation and fracture mechanism of isotactic polypropylene
,”
J. Mater. Process. Technol
., vol.
155
, pp.
1459
1464
,
2004
.
15.
K.-H.
Kim
,
J. L.
Ong
, and
O.
Okuno
, “
The effect of filler loading and morphology on the mechanical properties of contemporary composites
,”
J. Prosthet. Dent.
, vol.
87
, no.
6
, pp.
642
649
,
2002
.
16.
S.
Vigneshwaran
,
M.
Uthayakumar
,
V.
Arumugaprabu
, and
R. Deepak Joel
Johnson
, “
Influence of filler on erosion behavior of polymer composites: A comprehensive review
,”
J. Reinf. Plast. Compos.
, vol.
37
, no.
15
, pp.
1011
1019
,
2018
.
17.
G.
Sung
and
J. H.
Kim
, “
Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers
,”
Compos. Sci. Technol
., vol.
146
, pp.
147
154
,
2017
.
18.
I.-C.
Mirică
et al, “
Influence of filler loading on the mechanical properties of flowable resin composites
,”
Materials (Basel)
., vol.
13
, no.
6
, p.
1477
,
2020
.
19.
A. K.
Rout
and
A.
Satapathy
, “
Study on mechanical and tribo-performance of rice-husk filled glass–epoxy hybrid composites
,”
Mater. Des.
, vol.
41
, pp.
131
141
, Oct.
2012
, doi: .
20.
D. Mohana
Krishnudu
,
D.
Sreeramulu
, and
P. Venkateshwar
Reddy
, “
A study of filler content influence on dynamic mechanical and thermal characteristics of coir and luffa cylindrica reinforced hybrid composites
,”
Constr. Build. Mater.
, vol.
251
, p.
119040
, Aug.
2020
, doi: .
21.
D. Mohana
Krishnudu
,
D.
Sreeramulu
,
P. V.
Reddy
, and
P. Rajendra
Prasad
, “
Influence of filler on mechanical and di-electric properties of coir and luffa cylindrica fiber reinforced epoxy hybrid composites
,”
J. Nat. fibers
, pp.
1
10
,
2020
.
22.
P. V.
Reddy
,
P. R.
Prasad
,
D. M.
Krishnudu
, and
P.
Hussain
, “
Influence of fillers on mechanical properties of prosopis juliflora fiber reinforced hybrid composites
,”
Mater. Today Proc
., vol.
19
, pp.
384
387
,
2019
.
23.
A.
Baby
,
S. Y.
Nayak
,
S. S.
Heckadka
,
S.
Purohit
,
K. K.
Bhagat
, and
L. G.
Thomas
, “
Mechanical and morphological characterization of carbonized egg-shell fillers/Borassus fibre reinforced polyester hybrid composites
,”
Mater. Res. Express
, vol.
6
, no.
10
, p.
105342
,
2019
.
24.
G.
Uzun
and
D.
Aydemir
, “
Biocomposites from polyhydroxybutyrate and bio-fillers by solvent casting method
,”
Bull. Mater. Sci.
, vol.
40
, no.
2
, pp.
383
393
,
2017
.
25.
H.
Ghani
,
S. F. Abd
Karim
,
R.
Ramli
,
M.
Musa
, and
J.
Jaapar
, “
Effect of bio fillers on mechanical properties of natural rubber latex films
,”
in Key Engineering Materials
,
2019
, vol.
797
, pp.
249
254
.
26.
D.
Matykiewicz
, “
Biochar as an effective filler of carbon fiber reinforced bio-epoxy composites
,”
Processes
, vol.
8
, no.
6
, p.
724
,
2020
.
27.
N.
Nagaraj
,
S.
Balasubramaniam
,
V.
Venkataraman
,
R.
Manickam
,
R.
Nagarajan
, and
I. S.
Oluwarotimi
, “
Effect of cellulosic filler loading on mechanical and thermal properties of date palm seed/vinyl ester composites
,”
Int. J. Biol. Macromol
., vol.
147
, pp.
53
66
,
2020
.
28.
A. Y.
Patil
et al, “
Experimental and simulation studies on waste vegetable peels as bio-composite fillers for light duty applications
,”
Arab. J. Sci. Eng.
, vol.
44
, no.
9
, pp.
7895
7907
,
2019
.
29.
L. P. I.
Jayathilaka
,
T. U.
Ariyadasa
, and
S. M.
Egodage
, “
Development of biodegradable natural rubber latex composites by employing corn derivative bio-fillers
,”
J. Appl. Polym. Sci.
, vol.
137
, no.
40
, p.
49205
,
2020
.
30.
Y.
Wen
et al, “
Evaluating distillers grains as bio-fillers for high-density polyethylene
,”
J. Polym. Res
., vol.
27
, pp.
1
10
,
2020
.
31.
H.-S.
Yang
,
M. P.
Wolcott
,
H.-S.
Kim
, and
H.-J.
Kim
, “
Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites
,”
J. Therm. Anal. Calorim.
, vol.
82
, no.
1
, pp.
157
160
,
2005
.
32.
M. K. Abdul
Rashid
,
N. H. Ramli
Sulong
, and
U. J.
Alengaram
, “
Fire resistance performance of composite coating with geopolymer-based bio-fillers for lightweight panel application
,”
J. Appl. Polym. Sci.
, vol.
137
, no.
47
, p.
49558
,
2020
.
33.
N. A. M.
Aini
,
N.
Othman
,
M. H.
Hussin
,
K.
Sahakaro
, and
N.
Hayeemasae
, “
Effect of extraction methods on the molecular structure and thermal stability of kenaf (Hibiscus cannabinus core) biomass as an alternative bio-filler for rubber composites
,”
Int. J. Biol. Macromol
., vol.
154
, pp.
1255
1264
,
2020
.
34.
M.
Ji
et al, “
Enhanced mechanical properties, water resistance, thermal stability, and biodegradation of the starch-sisal fibre composites with various fillers
,”
Mater. Des
., vol.
198
, p.
109373
,
2021
.
35.
R. A.
Ilyas
et al, “
Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants
,”
Polymers (Basel)
., vol.
13
, no.
11
, p.
1701
, May
2021
, doi: .
This content is only available via PDF.
You do not currently have access to this content.