The success of construction projects is always exposed to risk, such as delay and Project Loss Costs. Based on empirical studies in manual and computational methods, delay and overrun costs were defined as single output with different analyses that require two different processes. This approach has been considered as less effective and less practical. Thus, this research attempted to allocate delay and Project Loss Cost simultaneously as double outputs through the implementation of the Sugeno fuzzy logic system with input double output (MIDO). The objectives of this research are to manually calculate the application of Sugeno fuzzy to minimize Time Delay (TD) and Project Loss Cost (LC), to computationally calculate the application of Sugeno fuzzy to minimize TD and LC, to validate both approaches, and to present the simulation results of Sugeno computational method for minimizing TD and LC through using a fuzzy software, namely the Mamdani MATLAB R2019a. It could be concluded that manual application of Sugeno fuzzy logic for the prediction of double output involved a four-step process, which is fuzzification of variable input, application of an implication function, composition of rules, and applying the weighted average defuzzification method. Meanwhile, the computationally applied Sugeno fuzzy method went through six stages, namely implementation of MIDO system, the categorization of two linguistics sets which are minimum and maximum, application of trapezoid membership function, establishment of 81 fuzzy rules, application of the MIN implication function, and the process of defuzzification. The validation results indicated that the outputs of manual method equal or are similar to the computational method, i.e., TD = 2.44 days and LC=0.813%. Meanwhile, the linearity tests for the TD value (R2=0.9711> 0.95) and LC value (R2=0.9799> 0.95) were declared as valid. The simulation results showed that Time Delays and Project Loss Costs cannot be minimized if the allocation of funds to the input variable is not balanced with the maximum penalty costs and vice versa.

1.
I.
Ismael
,
Keterlambatan Proyek Konstruksi Gedung Faktor Penyebab dan Tindakan Pencegahannya
14
(
1
)
46
56
, (
2013
).
2.
M.M.
Sharifi
, and
M.
Baghepor
,
Optimizing Cash-Flow-at-Risk in Construction Projects: A Cost Reduction Approach
60
337
338
, (
2016
).
3.
B.
Djatmiko
,
Analisa Kos Proyek Pada Pengembangan Rumah Type 21 dan 36 di Kota Malang 23-29
, (
2016
).
4.
T.
Noldi
,
Cash Flow Proyek
28
34
, (
2016
).
5.
Jian
Lu
, and
Lu
Wei
,
Research in to the moderating effects of progress and quality performance in project dispute negotiation
32
654
662
, (
2014
).
6.
B.
Djatmiko
 et al,
Optimasi Progres pada Pelaksana Jasa Konstruksi dengan Soft Ware Fuzzy
23
43
54
, (
2018
).
7.
A.
Senoucia
,
A.
Ismailb
, and
N.
Eldina
,
Time Delay and Cost Overrun in Qatari.
8.
N.
Hamzah
,
M.A.
Khoiry
,
I.
Arshad
,
N.M.
Tawil
, and
A.I.C.
Ani
,
Procedia Engineering The 2nd International Building Cause of Construction Delay-Theoretical Framework
Procedia Eng.
20, (2011
).
9.
T.
Gebrehiweta
, and
H.
Luob
,
Analysis of Delay Impact on Construction Project Based on RII and Correlation Coefficient: Empirical Study
196
366
374
, (
2017
).
10.
R.
Rosanti
,
N.
Nurvelly
,
E.
Setiawan
, and
A.
Ayuningtyas
,
Penggunaan Metode Jalur Kritis pada Manajemen Proyek (Studi Kasus: PT. Trend Communications International)
1
23
-
30
, (
2016
).
11.
M.
Kareth
,
H.
Tarore
,
J.
Tjakra
, and
D.R.O.
Walangitan
,
Analisis Optimalisasi Waktu dan Biaya dengan Program Primavera 6.0 (Studi Kasus: Proyek Perumahan Puri Kelapa Gading
1
(
1
)
12
22
, (
2012
).
12.
A.
Purnus
, and
C.N.
Bodea
,
Multi-Criteria Cash Flow Analysis in Construction Projects by Sugeno Fuzzy Logic
164
98
105
, (
2016
).
13.
H.
Harsono
,
A.
Adi
,
P.
Putro
, and
G.
Madyono
,
Perencanaan Pendistribusian Produk Untuk Minimasi Biaya
10
6
9
, (
2017
).
14.
S.
Suparjo
,
Metode Saving Matrix Sebagai Metode Alternatif untuk Efisiensi Biaya Distribusi
32
8
12
, (
2017
).
15.
D.
Bao
,
K.C.
Chan
, and
W.
Zhang
,
Asymmetric cash flow sensitivity of cash holdings
18
290
202
, (
2012
).
16.
Mohagheghi
, et al,
A New Uncertain Modeling of Production Project Time and Cost Based on Sugeno Fuzzy Sets
1
57
70
, (
2015
).
17.
Z.X.
Su
,
H.Y.
Wei
,
X.
Zou
, and
J.X.
Qi
,
Zero-One Formulation for a Partial Resource-Constrained Project Scheduling Problem with Generalized Precedence Relations
145
5
9
, (
2019
).
18.
K.I.
Kim
,
H.J.
Kim
,
G.B.
Kim
, and
S.H.
Bae
,
Tranexamic acid is effective for blood management in open-wedge high tibial osteotomy
104
691
, (
2018
).
19.
S.
Kusumadewi
,
Artificial Intelligence (Teknik dan Aplikasinya)
12
23
, (
2004
).
20.
T.
Weihua
, and
Z.
Huaguang
,
Optimal guaranteed cost control for fuzzy descriptor systems with time-varying delay
19
584
591
, (
2018
).
21.
C.
Sun
,
F.
Wang
, and
X.
He
,
Delay-dependent stability and stabilization criteria for T–S fuzzy singular systems with interval time-varying delay by improved delay partitioning approach 4-9
, (
2016
).
22.
Z.
Bao
,
W.X.
Zheng
, and
S.
Xua
,
Passivity analysis and passive control of fuzzy systems with time-varying delays
174
83
9
, (
2017
).
23.
Wang, and
H.
Lam
,
Local Stabilization for Continuous-time Takagi–Sugeno Fuzzy Systems With Time Delay
26
379
385
, (
2018
).
24.
W.G.
Cochran
,
Teknik Penarikan Sampel
21
22
, (
2015
).
25.
A.
Graha
,
Industri Konstruksi Bahan Bangunan
23
31
, (
2016
).
26.
M.T.
Chen
,
ABC of Cash Flow Projections AACE, International Transaction
6
9
, (
2016
).
27.
K.E.
Sukma
,
S.H.
Diputro
,
I.
Putu
, and
A.
Wiguna
,
Permodelan Schedule dan Cost pada Pekerjaan Konstruksi di Proyek Pembangunan Jalan Tol Surabaya-Mojokerto Seksi IV 1-6
, (
2014
).
28.
A.F.
Fudhla
,
I.N.
Pujawan
,
A.
Rahman
,
Pengembangan model matematis untuk penjadwalan rute kendaraan cross docking dalam rantai pasok dengan mempertimbangkan batasan kelas jalan dan kendaraan yang heterogen
5
8
, (
2014
).
29.
J.
Katili
, et al,
Analisis Varians Biaya Operasional Dalam Pengukuran Efektivitas Pengendalian Biaya Operasional PT. Asuransi Jiwasraya (Persero)
1
(
4
)
1262
1273
, (
2013
).
30.
B.
Djatmiko
,
Modelling of project cash flow on construction projects in Malang city 1887 4-8
, (
2017
).
31.
A.
Naba
,
Belajar Cepat Fuzzy Logic Menggunakan Matlab
, (
2009
).
32.
S.
Kusumadewi
, and
H.
Purnomo
,
Aplikasi Logika Fuzzy
, (
2013
).
33.
S.
Batubara
,
Analisis Perbandingan Metode Fuzzy Mamdani dan Fuzzy Sugeno untuk Penentuan Kualitas Cor Beton Instan
2
(
1
)
644
, (
2017
).
34.
V.
Kurniati
,
D.
Triyanto
, and
T.
Rismawan
,
Penerapan Logika Fuzzy dalam Sistem Prakiraan Cuaca Berbasis Mikrokontroler
(
2
)
119
128
, (
2017
).
35.
M.Y.
Pusadan
,
Pemrograman Matlab Pada Sistem Pakar Fuzzy
, (
2014
).
36.
M.S.
Irfan
,
Implementasi Logika Fuzzy Inference System Metode Sugeno pada Penentuan Jumlah Produksi Sarumg
, (
2016
).
37.
I.N.K.
Wardana
,
Teknik Antarmuka secara Serial Peripheral Interface (SPI) Menggunakan Platform Arduino dan Matlab
(
3
)
157
, (
2016
).
38.
S.N.
Hutagalung
,
Pembelajaran Fisika Dasar dan Elektronika Dasar Menggunakan Aplikasi Matlab Metode Simulink
(
1
)
30
35
, (
2018
).
39.
S.
Zaenab
,
Metode Penelitian
7
10
, (
2013
).
This content is only available via PDF.
You do not currently have access to this content.