Passive radiative cooling is an important way in developing technologies of energy conservation in hot and dry regions. In recent years, several novel materials with high emissivity have been proposed to be used for radiative coolers. These materials helps in economizing approximately 100 W/m2 average daily cooling energy.

This work presents a mathematical model for studying the optical properties of multi-layer coatings. It is also considered as a theoretical assessment of cooling performance for radiators of passive radiation cooling systems with coatings (multi-layer structures).

Coatings optical properties have been evaluated using the Transfer Matrix Method (TMM). The model has been developed in MATLAB. This mathematical model allows selecting the optimum coating for a radiative cooling system. Comparing the experimental literature data with the model theoretical results shows sufficient accuracy of the model. Therefore, it is possible to utilize the suggested model for engineering calculations.

1.
B.
Orel
,
M. K.
Gunde
, and
A.
Krainer
,
Solar Energy
50
(
6
),
477
482
(
1993
).
2.
I. V.
Tatarenko
,
V. V.
Mitropov
, and
A. A.
Nikitin
,
IOP Conf. Ser.: Mater. Sci. Eng.
826
,
012005
(
2020
).
3.
A. B.
Sulin
,
T. V.
Ryabova
, and
A. A.
Nikitin
,
AIP Conference Proceedings
2285
(
1
),
030002
(
2020
).
4.
T. V.
Ryabova
,
A. B.
Sulin
,
A. K.
Rubtsov
, and
S. S.
Muraveinikov
,
AIP Conference Proceedings
2141
(
1
),
030001
(
2019
).
5.
A. B.
Sulin
,
A. L.
Timofeevskiy
,
T. V.
Ryabova
,
A. A.
Nikitin
,
S. S.
Muraveinikov
, and
S. I.
Arendateleva
,
IOP Conf. Ser.: Mater. Sci. Eng.
939
,
012075
(
2020
).
6.
C. G.
Granqvist
and
A.
Hjortsberg
,
Journal of Applied Physics.
Vol.
52
,
6
,
4205
4220
(
1981
).
7.
D.
Michell
and
K. L.
Biggs
,
Appl. Energy, Physical Review.
Vol.
5
,
4
,
263
275
(
1979
).
8.
J.
Khedari
,
J.
Waewsak
,
S.
Thepa
, and
J.
Hirunlabh
,
Renewable Energy.
Vol.
20
,
2
,
183
193
(
2000
).
9.
A. P.
Raman
,
M. A.
Anoma
,
L.
Zhu
,
E.
Rephaeli
, and
S.
Fan
,
Nature
515
,
540
544
(
2014
).
10.
S. S.
Jenblat
and
O. V.
Volkova
,
Kholodilnaia Tekhnika
9
,
36
44
(
2019
).
11.
M.
Santamouris
and
J.
Feng
,
Buildings.
Vol.
8
,
12
,
168
(1–21) (
2018
).
12.
A.
Muscio
,
Climate.
Vol.
6
,
1
,
12
(
2018
).
13.
P.
Berbahl
and
S. E.
Bretz
,
Energy and Buildings.
Vol.
25
,
2
,
149
158
(
1997
).
14.
S.
Laatioui
,
M.
Benlattar
,
M.
Mazroui
, and
K.
Saadouni
,
Optik
,
166
,
24
30
(
2018
).
15.
M.
Muselli
,
Energy and Buildings.
Vol.
42
,
6
,
945
954
(
2010
).
16.
W.
Li
,
Y.
Li
, and
K. W.
Shah
,
Solar Energy
,
207
,
247
269
(
2020
).
17.
Z.
Cheng
,
F.
Wang
,
H.
Wang
,
H.
Liang
, and
L.
Ma
,
International Journal of Thermal Sciences
140
,
358
367
(
2019
).
18.
M.
Chen
,
W.
Li
,
S.
Tao
,
Z.
Fang
,
C.
Lu
, and Z.,
Coatings.
Vol.
10
,
2
,
144
(
2020
).
19.
N. F.
Cunha
,
A.
Al-Rjoub
,
L.
Rebouta
,
L.G.
Vieira
, and
S.
Lanceros-Mendez
,
Thin Solid Films
694
,
137736
(
2020
).
20.
B.
Naghshine
and
A.
Saboonchi
,
Communications
410
,
416
423
(
2018
).
21.
P.
Yeh
,
Optical waves in layered media
(
Wiley
,
2005
), p.
416
.
22.
H.
Khawaja
, “
Solution of pure scattering radiation transport equation using finite difference method
”,
in SCIA 2017 - Scandinavian Conference on Image Analysis
(
2017
), p.
492
501
.
23.
T.
Mackay
and
A.
Lakhtakia
, The Transfer-Matrix Method in electromagnetics and optics (
Morgan & Claypool Publishers
,
2020
), p.
126
.
24.
M.
Born
and
E.
Wolf
, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (
Elsevier
,
1980
), p.
836
.
25.
IR Transmission Spectra, Gemini Observatory
, available at http://www. gemini.edu/?q=node/10789 (accessed Nov 15,
2012
).
This content is only available via PDF.
You do not currently have access to this content.