Since the marine source is vast, an optimized energy converter design is needed to extract as much marine energy as possible. This paper briefly overviewed the optimization technique of hydrofoil for the ocean current energy development. Optimization was considered an essential solution to solve the hydrodynamics design problem formally and systematically. Optimization methods such as Genetic algorithms, Particle swarm optimization, and Computational fluid dynamic were the widely used techniques in achieving the optimal hydrofoil shape for ocean current energy applications. This paper also overviewed the Artificial Neural Network as an objective function for the optimization algorithm to reduce the optimization process time-consuming. It is crucial to improve the optimization process. Based on the outcome of this review paper, the selection of design variables has a significant impact on the optimization process. Therefore, it is recommended to apply different hydrofoil types and adjust the thickness and camber of the hydrofoil where both are essential geometric parameters. Optimization of hydrofoil's shape is crucial to increase the hydrodynamic performance of the turbine blades. Finally, the optimal design of the current energy converter hopefully will help ensure the continuity of energy harvest from the untouchable ocean and reduce the diversification burden on existing technologies yet can also act as a backbone for driving the economy.

1.
Erdiwansyah
,
R.
Mamat
,
M. S. M.
Sani
, and
K.
Sudhakar
,
Sci. Total Environ.
, pp.
1095
1102
(
2019
).
2.
A.
Schaeffer
,
M. R.
Archer
,
Q.
Baumard
,
M.
Roughan
, and
C.
Kerry
,
J. Mar. Syst.
, p.
103285
(
2020
).
3.
D.
Greaves
 et al,,
Int. J. Mar. Energy
, pp.
68
79
(
2016
).
4.
Y.
Ma
,
H.
Bi
,
M.
Hu
,
Y.
Zheng
, and
L.
Gan
,
Ocean Eng.
, pp.
687
699
(
2019
).
5.
R.
Pelc
and
R. M.
Fujita
,
Mar. Policy
, vol.
26
, no.
6
, pp.
471
479
(
2002
).
6.
X.
Le Lim
,
W. H.
Lam
, and
R.
Hashim
,
Renew. Sustain. Energy Rev.
, pp.
708
719
(
2015
).
7.
Renewable Energy
, Volume
9
, Issues
1-4
, Sept – Nov 1996, Page 1148.pdf.” .
8.
M. A.
Jusoh
,
M. Z.
Ibrahim
,
M. Z.
Daud
,
A.
Albani
, and
Z. Mohd
Yusop
, “
Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review
,”
Energies
, p.
4510
(Nov.
2019
).
9.
Renewables 2020 Global Status Report
,
Renewables Global Status Report
(
2020
).
10.
Sher Mohammad (2014). SEDA Malaysia: The Renewable Energy Status in Malaysia
.
Universiti Malaysia Terengganu Eastern Corridor Renewable Energy Symposium
. Kompleks Kuliah 1 UMT, 3 November 2014.,” no. November, p.
2014
(
2014
).
11.
F.
Behrouzi
,
M.
Nakisa
,
A.
Maimun
, and
Y. M.
Ahmed
,
Renew. Sustain. Energy Rev.
, pp.
1270
1281
(
2016
).
12.
R.
Kardooni
,
S. B.
Yusoff
,
F. B.
Kari
, and
L.
Moeenizadeh
,
Renew. Energy
, pp.
659
668
(
2018
).
13.
S.
Draycott
,
B.
Sellar
,
T.
Davey
,
D. R.
Noble
,
V.
Venugopal
, and
D. M.
Ingram
,
Renew. Sustain. Energy Rev.
, vol.
104
, no. January, pp.
15
29
(
2019
).
14.
S. R.
Sharvini
,
Z. Z.
Noor
,
C. S.
Chong
,
L. C.
Stringer
, and
R. O.
Yusuf
,
Sustain. Environ. Res.
, pp.
257
266
(
2018
).
15.
M.
Talaat
,
M. A.
Farahat
, and
M. H.
Elkholy
,
Energy
, pp.
668
682
(
2019
).
16.
M.
Shadman
 et al,,
Energies
, p.
3658
(
2019
).
17.
A. S.
Bahaj
,
A. F.
Molland
,
J. R.
Chaplin
, and
W. M. J.
Batten
,
Renew. Energy
, pp.
407
426
(
2007
).
18.
X.
Wu
,
X.
Zhang
,
X.
Tian
,
X.
Li
, and
W.
Lu
,
Ocean Eng.
, p.
106712
(
2020
).
19.
J. M.
Laurens
,
M.
Ait-Mohammed
, and
M.
Tarfaoui
,
Renew. Energy
, pp.
181
187
(
2016
).
20.
A.
Uihlein
and
D.
Magagna
,
Renew. Sustain. Energy Rev.
, pp.
1070
1081
(
2016
).
21.
I.
Daut
,
A. R. N.
Razliana
,
Y. M.
Irwan
, and
Z.
Farhana
,
Energy Procedia
, vol.
18
, pp.
1428
1433
(
2012
).
22.
M. J.
Jamanun
,
M. S.
Misaran
,
M.
Rahman
, and
W. K.
Muzammil
,
IOP Conf. Ser. Mater. Sci. Eng.
, vol.
217
, no.
1
(
2017
).
23.
A.
Pallotta
,
D.
Pietrogiacomi
, and
G. P.
Romano
,
Energy
, p.
116433
(
2019
).
24.
N.
Ali
, A. H. K, and
S.
Aljabair
, “
the Effect of Darrieus and Savonius Wind Turbines Position on the Performance of the Hybrid Wind Turbine At Low Wind Speed
,” vol.
11
, no.
2
, pp.
56
72
(
2020
).
25.
A. M. M.
Almotairi
,
F.
Mustapha
,
M. K. A. M.
Ariffin
, and
R.
Zahari
,
Int. J. Adv. Appl. Sci.
, vol. 3, no.
10
, pp.
25
30
(
2016
).
26.
A.
Vavalle
and
N.
Qin
,
J. Aircr.
, pp.
365
376
(
2007
).
27.
B. Seixas Gomes
de Almeida
and
V. Coppo
Leite
, “
Particle Swarm Optimization: A Powerful Technique for Solving Engineering Problems
,” in
Swarm Intelligence - Recent Advances, New Perspectives and Applications, IntechOpen
(
2019
).
28.
M.
Sundaray
,
A. K.
Tripathy
, and
S. K.
Tripathy
, “
A new algorithm based on particle swarm optimization for application in holographic coupler
,”
Optik (Stuttg).
, p.
164551
(
2020
).
29.
G.
Bedon
,
S.
De Betta
, and
E.
Benini
,
Renew. Energy
, pp.
328
340
(
2016
).
30.
R.
Mukesh
,
K.
Lingadurai
, and
U.
Selvakumar
,
J. King Saud Univ. - Eng. Sci.
, pp.
191
197
(
2014
).
31.
B. M.
Chaparro
,
S.
Thuillier
,
L. F.
Menezes
,
P. Y.
Manach
, and
J. V.
Fernandes
,
Comput. Mater. Sci.
, pp.
339
346
(
2008
).
32.
A.
Gauchía
,
C.
Álvarez-Caldas
,
A.
Quesada
, and
J. L. San
Román
,
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
, pp.
783
791
(
2009
).
33.
D.
Whitley
and
M. D.
Vose
, “
Introduction to genetic algorithms
,” pp.
1
4
(
1995
).
34.
M.
Marghany
,
Synth. Aperture Radar Imaging Mech. Oil Spills
, pp.
169
185
(
2020
).
35.
Y.
Arouri
and
M.
Sayyafzadeh
,
J. Pet. Sci. Eng.
, p.
106872
(
2020
).
36.
S.
Wei
and
C. P.
Soon
, “
Genetic algorithm-based text clustering technique
,”
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
, pp.
779
782
(
2006
).
37.
H.
Zhu
and
Y.
Peng
, “
Research on adaptive handover scheme based on improved genetic algorithm
,”
Procedia Comput. Sci.
, pp.
557
562
(
2020
).
38.
C. M.
Chan
,
H. L.
Bai
, and
D. Q.
He
,
Appl. Energy
, pp.
148
157
(
2018
).
39.
K. R.
Ram
,
S. P.
Lal
, and
M. R.
Ahmed
,
Renew. Energy
, pp.
56
67
(
2019
).
40.
X.
Wei
,
X.
Wang
, and
S.
Chen
,
Adv. Eng. Softw.
, vol.
149
, no. May, p.
102864
(
2020
).
41.
D.
Kamari
,
M.
Tadjfar
, and
A.
Madadi
,
Aerosp. Sci. Technol.
, vol.
79
, no. May, pp.
199
211
(
2018
).
42.
H.
Wen
,
S.
Sang
,
C.
Qiu
,
X.
Du
,
X.
Zhu
, and
Q.
Shi
,
Energy
, p.
116106
(
2019
).
43.
A.
Saleem
and
M. H.
Kim
, “
Aerodynamic performance optimization of an hydrofoil-based airborne wind turbine using genetic algorithm
,”
Energy
(
2020
).
44.
W.
Tian
,
Z.
Mao
,
B.
Zhang
, and
Y.
Li
,
Renew. Energy
, pp.
287
299
(
2018
).
45.
Q.
Yang
,
W. N.
Chen
,
J.
Da Deng
,
Y.
Li
,
T.
Gu
, and
J.
Zhang
,
IEEE Trans. Evol. Comput.
, pp.
578
594
(
2018
).
46.
A. C.
Optimization
,
S.
Intelligence
,
G.
Algorithm
,
O.
Method
,
D.
Cao
, and
E.
Vehicles
, “
Particle Swarm Optimization Integrated energy management for electrified vehicles
,” (
2019
).
47.
M.
Masdari
,
M.
Tahani
,
M. H.
Naderi
, and
N.
Babayan
,
J. Clean. Prod.
, pp.
47
56
(
2019
).
48.
D.
Negri
,
F. K.
Fiorentin
, and
J. M. C.
Filho
, “
A model updating method for plate elements using particle swarm optimization (PSO), modeling the boundary flexibility, including uncertainties on material and dimensional properties
,”
Lat. Am. J. Solids Struct.
(
2018
).
49.
C. W.
Cleghorn
and
A. P.
Engelbrecht
, “
Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption
,”
Swarm Intell.
(
2018
).
50.
Z.
Yong
,
Y.
Li-juan
,
Z.
Qian
, and
S.
Xiao-yan
,
J. Build. Eng.
, p.
101505
(
2020
).
51.
Z.
Xin-gang
,
L.
Ji
,
M.
Jin
, and
Z.
Ying
,
Expert Syst. Appl.
, p.
113370
(
2020
).
52.
J.
Smoczek
and
T.
Kusznir
,
J. KONES
, vol.
24
, no.
2
, pp.
125
132
(
2017
).
53.
C.
Themistokleous
,
N. G.
Markatos
,
J.
Prospathopoulos
,
V.
Riziotis
,
G.
Sieros
, and
G.
Papadakis
,
Appl. Sci.,
vol. 11, no.
6
(
2021
).
54.
X.
Li
,
L.
Gao
,
W.
Wang
,
C.
Wang
, and
L. Wen, Comput. Ind. Eng.
, vol.
135
, no. April, pp.
1036
1046
(
2019
).
55.
A. F.
Ali
and
M. A.
Tawhid
,
Ain Shams Eng. J.
, vol.
8
, no.
2
, pp.
191
206
(
2017
).
56.
H.
Yang
,
J.
Chen
,
X.
Pang
, and
G.
Chen
,
Compos. Struct.
, pp.
446
459
(
2019
).
57.
Y. Volkan
Pehlivanoglu
,
Aerosp. Sci. Technol.
, vol.
91
, pp.
110
121
(
2019
).
58.
Y.
Ma
,
H.
Bi
,
M.
Hu
,
Y.
Zheng
, and
L.
Gan
,
Ocean Eng.
, vol.
173
, pp.
687
699
(
2019
).
59.
X.
Zhang
,
F.
Xie
,
T.
Ji
,
Z.
Zhu
, and
Y.
Zheng
,
Comput. Methods Appl. Mech. Eng.
, vol.
373
, p.
113485
(
2021
).
60.
H.
Chen
,
T.
Tang
,
N.
Ait-Ahmed
,
M. E. H.
Benbouzid
,
M.
MacHmoum
, and
M. E. H.
Zaim
,
IEEE Access
, pp.
12665
12685
(
2018
).
61.
M.
Yin
,
Z.
Yang
,
Y.
Xu
,
J.
Liu
,
L.
Zhou
, and
Y.
Zou
,
Appl. Energy
, pp.
508
521
(
2018
).
62.
L. C.
Pagnini
,
M.
Burlando
, and
M. P.
Repetto
,
Appl. Energy
, pp.
112
121
(
2015
).
63.
X.
Gao
,
H.
Yang
, and
L.
Lu
,
Appl. Energy
, pp.
192
200
(
2016
).
64.
A. S.
Ahmad
 et al,,
Renew. Sustain. Energy Rev.
, pp.
102
109
(
2014
).
65.
F.
Ornelas-Tellez
,
J. J.
Rico-Melgoza
,
A. E.
Villafuerte
, and
F. J.
Zavala-Mendoza
,
Neural Networks: A Methodology for Modeling and Control Design of Dynamical Systems
.
Elsevier Inc
. (
2019
).
66.
W.
Yu
and
D.
Carrillo
,
Hierarchical Dynamic Neural Networks for Cascade System Modeling With Application to Wastewater Treatment
.
Elsevier Inc
. (
2019
).
67.
S.
Sanaye
and
S.
Hosseini
, “
Prediction of blade life cycle for an industrial gas turbine at off-design conditions by applying thermodynamics , turbo-machinery and artificial neural network models
,”
Energy Reports
, pp.
1268
1285
(
2020
).
68.
K. V.
Kostas
,
A.
Amiralin
,
S.
Sagimbayev
,
T.
Massalov
,
Y.
Kalel
, and
C. G.
Politis
,
Ocean Eng.
, p.
107020
(
2020
).
69.
V. Le and L.
Caracoglia
,
Comput. Struct.
, p.
106208
(
2020
).
70.
M.
Fayed
,
M.
Elhadary
,
H. Ait
Abderrahmane
, and
B. N.
Zakher
,
Alexandria Eng. J.
, pp.
1367
1374
(
2019
).
71.
S.
Kaviani
and
I.
Sohn
,
ICT Express
, pp.
1
6
(
2020
).
72.
M.
Sessarego
,
J.
Feng
,
N.
Ramos-García
, and
S. G.
Horcas
,
Renew. Energy
, pp.
1524
1535
(
2020
).
73.
A.
Sharma
,
R.
Kumar
, and
V.
Mansotra
,
Int. J. Innov. Res. Comput. Commun. Eng. (An ISO Certif. Organ.
, pp.
11449
11455
(
2016
).
74.
S. M.
Lawan
,
W. A. W. Z.
Abidin
,
W. Y.
Chai
,
A.
Baharun
, and
T.
Masri
,
Int. J. Renew. Energy Res.
, vol.
4
, no.
3
, pp.
618
627
(
2014
).
75.
G.
Sun
,
Y.
Sun
, and
S.
Wang
,
Aerosp. Sci. Technol.
, pp.
415
428
(
2015
).
76.
A. P.
Marugán
,
F. P. G.
Márquez
,
J. M. P.
Perez
, and
D.
Ruiz-Hernández
,
Appl. Energy
, pp.
1822
1836
(
2018
).
77.
O.
Ellabban
,
H.
Abu-Rub
, and
F.
Blaabjerg
,
Renew. Sustain. Energy Rev.
, pp.
748
764
(
2014
).
78.
I.
Catipovic
,
N.
Hadzic
,
F.
Dias
, and
H.
Kozmar
,
Ocean Eng.
, pp.
323
331
(
2019
).
79.
X.
Tian
and
J.
Li
,
Knowledge-Based Syst.
, pp.
77
91
(
2019
).
80.
J.
Tu
,
G.-H.
Yeoh
, and
C.
Liu
,
CFD Solution Procedure: A Beginning.
(
2018
).
81.
F.
Malizia
,
H.
Montazeri
, and
B.
Blocken
,
J. Wind Eng. Ind. Aerodyn.
, p.
103988
(
2019
).
82.
J.
Tu
,
G.-H.
Yeoh
, and
C.
Liu
,
CFD Case Studies.
(
2018
).
83.
J.
Tu
,
G.-H.
Yeoh
, and
C.
Liu
,
Introduction.
(
2018
).
84.
M. K.
Thompson
and
J. M.
Thompson
,
ANSYS Mech. APDL Finite Elem. Anal.
, pp.
1
9
(
2017
).
85.
A.
Dash
,
IOSR J. Mech. Civ. Eng.
, vol. Vol
13
, pp.
18
24
(
2016
).
86.
M.
Ghasemian
,
Z. N.
Ashrafi
, and
A.
Sedaghat
,
Energy Convers. Manag.
, pp.
87
100
(
2017
).
87.
M.
Rahimian
,
J.
Walker
, and
I.
Penesis
,
Int. J. Mar. Energy
, pp.
151
164
(
2017
).
88.
D.
Anitha
,
G. K.
Shamili
,
P. Ravi
Kumar
, and
R. Sabari
Vihar
, “
Air foil Shape Optimization Using Cfd and Parametrization Methods
,”
Mater. Today Proc.
, pp.
5364
5373
(
2018
).
89.
M.
Basumatary
,
A.
Biswas
, and
R. D.
Misra
,
Energy Convers. Manag.
, vol.
174
, pp.
72
87
(
2018
).
90.
B. S. Anil
Kumar
, Ramalingaiah,
S.
Manjunath
, and
R.
Ganganna
, “
Computational Investigation of Flow Separation over NACA 23024 Hydrofoil at 6 Million Free Stream Reynolds Number Using k-Epsilon Turbulence Model
,”
Mater. Today Proc.
(
2018
).
91.
L.
Kharulaman
,
A.
Aabid
,
F. A. G.
Mehaboobali
, and
S. A.
Khan
,
Int. J. Eng. Adv. Technol.
, pp.
5450
5456
(
2019
).
92.
M.
Badshah
,
S.
Badshah
, and
S.
Jan
,
J. Ocean Eng. Sci.
, pp.
164
172
(
2020
).
93.
S.
Acarer
,
Energy
, vol.
201
, p.
117659
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.