The hydrological mechanism in the river basin is vital to sustain and conserve water resources. Therefore, the study's main aim is to determine the applicability of ArcGIS version 10.0.2 with the Soil and Water Assessment Tools (SWAT) model in the assessment of streamflow in UMFR catchment with a total area of 975 km2 located on the western coast of peninsular Malaysia, Kedah. The statistical model outputs chosen to measure the correlation between observed and simulated flow in the study area are the coefficient of determination (R2), Nash – Sutcliffe efficiency (NSE), and percent of bias (PBIAS). The results demonstrate a good match between observed and simulated flows, demonstrating that the SWAT model can accurately predict streamflow at UMFR. The findings suggest that during calibration and validation, both NSE, R2, and PBIAS are more than 0.5, indicating a strong agreement between observed and simulated flow. The most sensitive parameter that may influence simulation outcomes are SOL_AWC, SOL_K and GW_REVAP. For soil parameters, the most sensitive parameter is SOL_AWC compared to the other soil indicators. These findings justify that the model can predict water balance and water yield in all other river basins in Kedah for sustainable water resources management where the water quantity becomes a critical issue in the states.

1.
K.
Khalid
,
M. F.
Ali
,
N. F. A.
Rahman
,
M. R.
Mispan
,
S. H.
Haron
,
Z.
Othman
and
M. F.
Bachok
,
Procedia engineering
162
,
441
447
(
2016
).
2.
M. F.
Ali
,
N. F. A.
Rahman
and
K.
Khalid
, “
Discharge assessment by using integrated hydrologic model for environmental technology development
,”
Advanced materials research
,
Haider
F.
,
Abdul
Amir
,
M.
Mucha
and
X.
Jie
(Editors), vol.
911
, Trans Tech Publ, pp.
378
382
(
2014
).
3.
J. G.
Arnold
,
M. A.
Youssef
,
H.
Yen
,
M. J.
White
,
A. Y.
Sheshukov
,
A. M.
Sadeghi
,
D. N.
Moriasi
,
J. L.
Steiner
,
D. M.
Amatya
and
R. W.
Skaggs
,
Transactions of the ASABE
58
, no.
6
,
1637
1660
(
2015
).
4.
S.
Liersch
, “
The program pcpstat: User's manual
,”
Berlin
(
2003
).
5.
K.
Abbaspour
, “
Swat calibration and uncertainty programs—a user manual
”,
Swiss Federal Institute of Aquatic Science Technology,
Eawag Switzerland (
2015
).
6.
A.
Gupta
and
A.
Barbu
,
Pattern Recognition
78
,
215
227
(
2018
).
7.
Z.
Biru
and
D.
Kumar
,
Sustain. Wat. Resour. Manag.
4
, no.
4
,
937
949
(
2018
).
8.
J. G.
Arnold
,
R.
Srinivasan
,
R. S.
Muttiah
and
J. R.
Williams
,
JAWRA Journal of the American Water Resources Association
34
, no.
1
,
73
89
(
1998
).
9.
U.
Duru
,
M.
Arabi
and
E. E.
Wohl
,
Physical Geography
39
, no.
3
,
264
289
(
2018
).
10.
S. L.
Neitsch
,
J. G.
Arnold
,
J. R.
Kiniry
and
J. R.
Williams
,
Texas Water Resources Institute
(
2011
).
11.
R.
Srinivasan
,
T. S.
Ramanarayanan
,
J. G.
Arnold
and
S. T.
Bednarz
,
JAWRA Journal of the American Water Resources Association
34
, no.
1
,
91
101
(
1998
).
12.
A.
Opere
and
B.
Okello
,
Hydrology Earth System Sciences Discussions
8
, no.
1
,
1765
1797
(
2011
).
13.
J.
Guo
and
X.
Su
,
Hydrology Research
50
, no.
3
,
861
877
(
2019
).
14.
R.
Ang
and
C.
Oeurng
,
Water Science
32
, no.
1
,
89
101
(
2018
).
15.
M. L.
Tan
,
P. W.
Gassman
,
R.
Srinivasan
,
J. G.
Arnold
and
X. J. W.
Yang
,
Water
11
, no.
5
,
914
(
2019
).
16.
M. L.
Tan
,
L.
Juneng
,
F. T.
Tangang
,
N.
Samat
,
N. W.
Chan
,
Z.
Yusop
and
S. T.
Ngai
,
Atmospheric Research
246
,
105155
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.