We present the second-order tangent group of a Lie group as a cocycle extension of the first-order tangent group. We exhibit matching of the second-order tangent groups of two mutually interacting Lie groups. We examine the cocycle extension character of the matched second-order group and arrive at that matched pair of cocycle extensions is a cocycle extension by itself.
REFERENCES
1.
M.
Crampin
, W.
Sarlet
, and F.
Cantrijn
, Higher-order differential equations and higher-order Lagrangian mechanics
, Math. Proc. Camb. Phil. Soc.
99
, 565
–587
(1986
).2.
F. Çağatay
Uçgun
, O.
Esen
, and H.
Gümral
, Reductions of topologically massive gravity I: Hamiltonian analysis of second order degenerate Lagrangians
, J. Math. Phys
. 59
(1
), 013510
(2018
) .3.
O.
Esen
, and S.
Sütlü
, Lagrangian dynamics on matched pairs
, J. Geo. and Phys
, 111
, 142
–157
(2017
).4.
O.
Esen
, M.
Kudeyt
, and S.
Sütlü
, Second order Lagrangian dynamics on double cross product groups
, J. of Geo. and Phys.
, 159
, 103934
(2021
).5.
F.
Gay-Balmaz
, D. D.
Holm
, and T. S.
Ratiu
, Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions
, Bulletin of the Brazilian Mathematical Society, New Series
, 42
(4
), 579
–606
(2011
).6.
G.
Hochschild
and G. D.
Mostow
, Cohomology of Lie groups
, Illinois J. Math.
, 6
, 367
–401
(1962
).7.
S.
Majid
, Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations
, Pacific J. Math.
, 141
(2
), 311
–332
(1990
).8.
S.
Majid
, Foundations of Quantum Group Theory (Cambridge University Press
, 2000
).9.
J. E.
Marsden
, G.
MisioÅek
, M.
Perlmutter
, and T. S.
Ratiu
, Symplectic reduction for semidirect products and central extensions
, Differential Geometry and its Applications
, 9
(1-2
), 173
–212
(1998
).10.
C.
Vizman
, The group structure for jet bundles over Lie groups
, Journal of Lie Theory
, 23
, 885
–89
(2013
).
This content is only available via PDF.
© 2022 Author(s).
2022
Author(s)
You do not currently have access to this content.