We present the second-order tangent group of a Lie group as a cocycle extension of the first-order tangent group. We exhibit matching of the second-order tangent groups of two mutually interacting Lie groups. We examine the cocycle extension character of the matched second-order group and arrive at that matched pair of cocycle extensions is a cocycle extension by itself.

1.
M.
Crampin
,
W.
Sarlet
, and
F.
Cantrijn
,
Higher-order differential equations and higher-order Lagrangian mechanics
,
Math. Proc. Camb. Phil. Soc.
99
,
565
587
(
1986
).
2.
F. Çağatay
Uçgun
,
O.
Esen
, and
H.
Gümral
,
Reductions of topologically massive gravity I: Hamiltonian analysis of second order degenerate Lagrangians
,
J. Math. Phys
.
59
(
1
),
013510
(
2018
) .
3.
O.
Esen
, and
S.
Sütlü
,
Lagrangian dynamics on matched pairs
,
J. Geo. and Phys
,
111
,
142
157
(
2017
).
4.
O.
Esen
,
M.
Kudeyt
, and
S.
Sütlü
,
Second order Lagrangian dynamics on double cross product groups
,
J. of Geo. and Phys.
,
159
,
103934
(
2021
).
5.
F.
Gay-Balmaz
,
D. D.
Holm
, and
T. S.
Ratiu
,
Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions
,
Bulletin of the Brazilian Mathematical Society, New Series
,
42
(
4
),
579
606
(
2011
).
6.
G.
Hochschild
and
G. D.
Mostow
,
Cohomology of Lie groups
,
Illinois J. Math.
,
6
,
367
401
(
1962
).
7.
S.
Majid
,
Matched pairs of Lie groups associated to solutions of the Yang-Baxter equations
,
Pacific J. Math.
,
141
(
2
),
311
332
(
1990
).
8.
S.
Majid
, Foundations of Quantum Group Theory (
Cambridge University Press
,
2000
).
9.
J. E.
Marsden
,
G.
MisioÅek
,
M.
Perlmutter
, and
T. S.
Ratiu
,
Symplectic reduction for semidirect products and central extensions
,
Differential Geometry and its Applications
,
9
(
1-2
),
173
212
(
1998
).
10.
C.
Vizman
,
The group structure for jet bundles over Lie groups
,
Journal of Lie Theory
,
23
,
885
89
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.