The purpose of this note is to prove an existence theorem of fixed point for θ-type contraction in the setting of M- complete M-metric spaces. The results presented in the paper improve and extend the corresponding results in Banach [6], Asadi at. al. [5], Jleli and Samet [12]. We give an example to illustrate this fact.

1.
J.
Ahmad
,
A. E.
Al-Mazrooei
,
Y. J.
Cho
and
Y. O.
Yang
, “
Fixed point results for generalized θ-contractions
,”
J. Nonlinear Sci. Appl.
10
, (
2017
).
2.
I.
Altun
,
H. A.
Hançer
and
G.
Mınak
, “
On a general class of weakly Picard operators
,”
Miskolc Mathematical Notes.
16
,
25
32
(
2015
).
3.
I.
Altun
and
G.
Minak
, “
On fixed point theorems for multivalued mappings of Feng-Liu type
,”
Bulletin of the Korean Mathematical Society.
52
, (
2015
).
4.
I.
Altun
,
H.
Sahin
, and
D.
Turkoglu
, “
Fixed point results for multivalued mappings of Feng-Liu type on M-metric spaces
,”
J. Nonlinear Funct. Anal.
2018
, (
2018
).
5.
M.
Asadi
,
E.
Karapınar
and
P.
Salimi
, “
New extension of p-metric spaces with some fixed-point results on M-metric spaces
,”
Journal of Inequalities and Applications.
1
, (
2014
).
6.
S.
Banach
, “
Sur les operations dans les ensembles abstraits et leur applications aux equations integrales
,”
Fundam. Math.
3
, (
1922
).
7.
G.
Durmaz
and
I.
Altun
, “
A new perspective for multivalued weakly picard operators
,”
Publications de l’Institut Mathematique.
101
, (
2017
).
8.
G.
Durmaz
and
I.
Altun
, “
On Nonlinear Set-Valued θ-Contractions
,”
Bulletin of the Malaysian Mathematical Sciences Society.
43
, (
2020
).
9.
H. A.
Hançer
,
G.
Mınak
and
I.
Altun
,”
On a broad category of multivalued weakly Picard operators,” Fixed Point Theory.
18
, (
2017
).
10.
N.
Hussain
,
V.
Parvaneh
,
B.
Samet
and
C.
Vetro
, “
Some fixed point theorems for generalized contractive mappings in complete metric spaces
,”
Fixed Point Theory and Applications.
1
, (
2015
).
11.
M.
Jleli
,
E.
Karapınar
and
B.
Samet
, “
Further generalizations of the Banach contraction principle
,”
Journal of Inequalities and Applications.
1
, (
2014
).
12.
M.
Jleli
and
B.
Samet
, “
A new generalization of the Banach contraction principle
,”
Journal of inequalities and applications.
1
, (
2014
).
13.
X. D.
Liu
,
S. S.
Chang
,
Y.
Xiao
and
L. C.
Zhao
, “
Existence of fixed points for θ-type contraction and θ-type Suzuki contraction in complete metric spaces
,”
Fixed Point Theory and Applications.
1
, (
2016
).
14.
H.
Sahin
,
I.
Altun
and
D.
Turkoglu
, “
Two fixed point results for multivalued F-contractions on M-metric spaces
,”
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas.
113
, (
2019
).
15.
H.
Sahin
,
I.
Altun
and
D.
Turkoglu
, “Fixed Point Results for Mixed Multivalued Mappings of Feng-Liu Type on M b-Metric Spaces,”
Mathematical Methods in Engineering
(pp.
67
80
).
Springer
, (
2019
).
This content is only available via PDF.
You do not currently have access to this content.