The classification algorithm's goal is to built a model that maximizes the accuracy of the number of correct predictions, although the completeness of the model plays an important role in many application areas. Ant Colony Optimization (ACO) is relatively simple to realize the behavior of ant colonies, and they cooperate with each other to achieve the goal from nest to food source. A system capable of executing a search to discover the optimum answer to an optimization issue with a vast search space is referred to as a colony generation system. Classification by applying the ACO algorithm in data mining has the advantage of searching with flexible values and value combinations. One of the many benefits that can be applied using ACO is to build a decision tree. As a model representation, the decision tree is easy to understand and can be represented in the form of a graph. By using the modified decision tree using ACO, the result of using the pruning technique is 76.1%.

1.
M.
Dorigo
and
T.
Stützle
, “
The Ant Colony Optimization Metaheuristic
,”
in Ant Colony Optimization
,
2018
. doi: .
2.
M.
Dorigo
and
K.
Socha
, “
An Introduction to Ant Colony Optimization
,”
in Handbook of Approximation Algorithms and Metaheuristics, Second Edition
,
2019
. doi: .
3.
A. K.
Nugroho
and
I.
Permadi
, “
IMPLEMENTASI JALUR PENDEK MENGGUNAKAN ANT COLONY OPTIMIZATION
,”
Dinamika Rekayasa
, vol.
16
, no.
1
,
2020
, doi: .
4.
F. E. B.
Otero
,
A. A.
Freitas
, and
C. G.
Johnson
, “
Inducing decision trees with an ant colony optimization algorithm
,”
Applied Soft Computing Journal
, vol.
12
, no.
11, 2012
, doi: .
5.
M.
Dorigo
and
T.
Stützle
, “Ant colony optimization: Overview and recent advances,”
International Series in Operations Research and Management Science
, vol.
272
,
Springer New York LLC
,
2019
, pp.
311
351
. doi: .
6.
M.
Dorigo
and
T.
Stützle
, “
The Ant Colony Optimization Metaheuristic
,”
in Ant Colony Optimization
,
2018
. doi: .
7.
M.
Dorigo
and
T.
Stützle
, “
The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances
,”
2003
. doi: .
8.
M.
Slocum
, “
Decision Making Using Id3 Algorithm
,”
InSight: RIVIER ACADEMIC JOURNAL
, vol.
8
, no.
2
,
2012
.
9.
R. S.
Parpinelli
,
H. S.
Lopes
, and
A. A.
Freitas
, “
Data mining with an ant colony optimization algorithm
,”
IEEE Transactions on Evolutionary Computation
,
2002
, doi: .
10.
A. K.
Nugroho
and
Dadang
Iskandar
, “
Algoritma Iterative Dichotomizer 3 (ID3) Pengambilan Keputusan
,”
Universitas Jendral Soedirman
, vol.
3
,
2015
.
11.
M.
Dorigo
and
K.
Socha
, “
An Introduction to Ant Colony Optimization
,”
in Handbook of Approximation Algorithms and Metaheuristics, Second Edition
,
2019
. doi: .
12.
A. K.
Nugroho
and
I.
Permadi
, “
ANT COLONY OPTIMIZATION UNTUK MENYELEKSI FITUR DAN KLASIFIKASI ARTIKEL
,”
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer
, vol.
10
, no.
1
,
2019
, doi: .
13.
A. Kelik
Nugroho
and
I.
Permadi
, “
Composite Image with a Geographic Information System Approach
,”
in IOP Conference Series: Earth and Environmental Science
,
2019
, vol.
406
, no.
1
. doi: .
14.
A. K.
Nugroho
,
I.
Permadi
, and
A.
Hanifa
, “
Probabilistic Ant Colony Optimization for Contour Detection of Psoriasis
,”
Proceeding International Conference on Science and Engineering
, vol.
3
,
2020
, doi: .
15.
A.
Fadli
,
A.
Wisnu
,
W.
Nugraha
,
M. S.
Aliim
,
Y. I.
Kurniawan
, and
W. H.
Purnomo
, “
Simple Correlation Between Weather and COVID-19 Pandemic Using Data Mining Algorithms
,”
in IOP Conference Series : Materials Science and Engineering
982
012015,
2020
, pp.
1
10
, doi: .
This content is only available via PDF.
You do not currently have access to this content.