In all age groups, one of the major diseases between individuals is Diabetes Mellitus (DM). Health-care industries are heavily depending on data mining in the diagnostics of diseases. Also, the medical data mining methods were utilized for the purpose of finding hidden patterns in datasets of medical domains in terms of medical treatment and diagnosis. The presented work is distinguishing normal or diabetic individuals with the use of 2 main phases. With regard to the 1st phase, feature selection was achieved with the use of information gain and chi-square test methods for finding the major efficient attributes regarding such disease. In terms of the 2nd phase, classification was conducted with the use of K-Nearest Neighbors (KNN) and Support Vector Machines (SVMs) algorithms. Pima India Dataset is used, in which it comprises (768) records, (268) positive predicted classes indicating diabetic patients and a total of (500) negative predicted classes indicate non diabetes. The experiment shows that SVM with Chi-square test give accuracy of 88% with the time taken in the implementation process was 0.02 seconds, KNN with Chi-square test give accuracy of 84% with the time taken in the implementation process was 0.03 seconds, and SVM with Information gain give accuracy of 87% with the time taken in the implementation process was 0.02 seconds, KNN with Information gain give accuracy of 82% with the time taken in the implementation process was 0.02 seconds.

1.
P.
Saeedi
,
I.
Petersohn
,
P.
Salpea
,
B.
Malanda
,
S.
Karuranga
,
N.
Unwin
,
S.
Colagiuri
,
L.
Guariguata
,
A. A.
Motala
,
K.
Ogurtsova
,
J. E.
Shaw
,
D.
Bright
and
R.
Williams
,
On behalf of the IDF Diabetes Atlas Committee
, “
Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition
,”
Diabetes Res. Clin. Pract.
, vol.
157
, p.
107843
,
2019
.
2.
M.
Alehegn
and
R.
Joshi
, “
Analysis and prediction of diabetes diseases using machine learning algorithm: Ensemble approach
.,”
Int. Res. J. Eng. Technol.
, vol.
4
, no.
10
, pp.
426
436
,
2017
.
3.
N. A.
Saeed
and
Z. T. M.
Al-Ta’i
, “
Feature selection using hybrid dragonfly algorithm in a heart disease predication system
,”
Int. J. Eng. Adv. Technol.
, vol.
8
, no.
6
, pp.
2862
2867
,
2019
.
4.
V. R.
Balpande
and
R. D.
Wajgi
, “
Prediction and severity estimation of diabetes using data mining technique
,”
IEEE Int. Conf. Innov. Mech. Ind. Appl. ICIMIA 2017 - Proc., no. Icimia
, pp.
576
580
,
2017
.
5.
Sheshasaayee and
G.
Thailambal
, “
Comparison of Classification Algorithms in Text Mining
,”
Int. J. Pure Appl. Math.
, vol.
116
, no.
22
, pp.
425
433
,
2017
.
6.
S. R. P.
Shetty
and
S.
Joshi
, “
A Tool for Diabetes Prediction and Monitoring Using Data Mining Technique
,”
Int. J. Inf. Technol. Comput. Sci.
, vol.
8
, no.
11
, pp.
26
32
,
2016
.
7.
1
16
.
Xue
,
BingXue
, B.,
Zhang
,
M.
,
Member
,
S.
, &
Browne
,
W. N.
(
2012
).
Particle Swarm Optimization for Feature Selection in Classification : A Multi-Objective Approach
.
Ieee Transactions on Cybernetics
,
M.
Zhang
,
S.
Member
, and
W. N.
Browne
, “
Particle Swarm Optimization for Feature Selection in Classification : A Multi-Objective Approach
,”
Ieee Trans. Cybern., pp. 1–16
,
2012
.
8.
K.
Pavya
and
D. B.
Srinivasan
, “
Feature Selection Techniques in Data Mining: A Study
,”
Int. J. Sci. Dev. Res.
, vol.
2
, no.
6
, pp.
594
598
,
2017
.
9.
K.
Thangadurai
and
N.
Nandhini
, “
Comparison of data mining algorithms for prediction and diagnosis of diabetes mellitus
,” vol.
7
, no.
5
, pp.
221
224
,
2016
.
10.
K.
Saravanapriya
, “
Performance Analysis of Classification Algorithms on Diabetes Dataset
,”
Int. J. Comput. Sci. Eng.
, vol.
5
, no.
9
, pp.
15
20
,
2017
.
11.
M.
Aminul
and
N.
Jahan
, “
Prediction of Onset Diabetes using Machine Learning Techniques
,”
Int. J. Comput. Appl.
, vol.
180
, no.
5
, pp.
7
11
,
2017
.
12.
K. M.
Varma
and
Dr. B.S.
Panda
, “
Comparative analysis of Predicting Diabetes Using Machine Learning Techniques
,”
Jetir
, vol.
6
, no.
6
, pp.
522
530
,
2019
, [Online]. Available: www.jetir.org.
13.
M.
Warke
,
V.
Kumar
,
S.
Tarale
,
P.
Galgat
,
D. C.-
Diabetes
, and undefined 2019, “
Diabetes Diagnosis using Machine Learning Algorithms
,”
Academia.Edu
, pp.
1470
1476
,
2019
, [Online]. Available: http://www.academia.edu/download/60380576/IRJET-V6I327720190824-111158-dpcyom.pdf.
14.
M. F.
Faruque
, Asaduzzaman, and
I. H.
Sarker
, “
Performance Analysis of Machine Learning Techniques toPredict Diabetes Mellitus
,”
2nd Int. Conf. Electr. Comput. Commun. Eng. ECCE 2019
, pp.
1
4
,
2019
.
15.
S.
Sunge
,
H. L. H. S.
Warnar
,
Y.
Heryadi
,
E.
Abdurachman
,
B.
Soewito
, and
F. L.
Gaol
, “
Prediction Diabetes Mellitus Using Decision Tree Models
,”
2019 Int. Congr. Appl. Inf. Technol. AIT 2019
,
2019
.
16.
V.
Sasikala
,
K. K. K.
Venkata
,
S.
Venkatramaphanikumar
,
P. A.
Babu
,
M. E.
Kumar
, and
N. G.
Krishna
, “
Weather Predictive System using Machine Learning Algorithms
,”
J. Xi’an Univ. Archit. Technol.
, vol.
XII
, no.
Vi
, pp.
31
39
,
2020
, [Online]. Available: https://xajzkjdx.cn/gallery/44-june2020.pdf.
17.
T.
Daghistani
and
R.
Alshammari
, “
Diagnosis of Diabetes by Applying Data Mining Classification Techniques
,”
Int. J. Adv. Comput. Sci. Appl.
, vol.
7
, no.
7
, pp.
10913
10924
,
2016
.
This content is only available via PDF.
You do not currently have access to this content.