Solar energy utilization efficiency of solar thermoelectric generators mainly depends upon the temperature gradient available across the power module. The temperature gradient can be increased through the better performance of the thermal management system. This work reviews the thermal management of solar thermoelectric power generation by material selection for thermoelectric generators, solar absorbers, insulation, and heat exchanger to improve solar energy utilization. The proper maintenance of temperature gradient in the range of 150-300°C across the power module is attainable through the effective heat exchanger designs. Higher conversion efficiency up to 8.5% was observed in the literature due to the practical material selection and temperature gradients.

1.
Senthil
R.
,
Cheralathan
M.
Enhancement of the thermal energy storage capacity of a parabolic dish concentrated solar receiver using phase change materials
.
J Energy Storage
25
(
2019
).
2.
Maridurai
T.
,
Muhammad Irfan
A. A.
,
Vengadesan
E.
,
Loganathan
K.
,
Mohamed Aminudeen
M. S.
,
Harrish Ahamed
K.
,
Review on Material Aspects of Solar Thermal Collectors
,
International Journal of Mechanical Engineering and Technology
,
9
(
7
),
286
292
(
2018
).
3.
Liu
Z.
,
Mao
J.
,
Sui
J.
,
Ren
Z.
High thermoelectric performance of α-MgAgSb for power generation
.
Energy Environmental science
11
(
1
),
23
44
(
2018
).
4.
Farhangian Marandi
O.
,
Ameri
M.
,
Adelshahian
B.
The experimental investigation of a hybrid photovoltaic-thermoelectric power generator solar cavity-receiver
.
Sol Energy
161
,
38
46
(
2018
).
5.
Fallah Kohan
HR
,
Lotfipour
F.
,
Eslami
M.
Numerical simulation of a photovoltaic thermoelectric hybrid power generation system
.
Solar Energy
174
,
537
548
(
2018
).
6.
Rouse
JP
,
Garvey
SD
,
Cárdenas
B.
,
Davenne
TR
.
A series hybrid “real inertia” energy storage system
.
Journal Energy Storage
20
,
1
15
(
2018
).
7.
Sarbu
I.
,
Dorca
A.
A comprehensive review of solar thermoelectric cooling systems
.
International journal Energy Res
42
(
2
),
395
415
(
2018
).
8.
Obeidat
F.
A comprehensive review of future photovoltaic systems
.
Sol Energy
163
,
545
551
(
2018
).
9.
Daghigh
R.
,
Khaledian
Y.
Effective design, theoretical and experimental assessment of a solar thermoelectric cooling-heating system
.
Sol Energy
162
,
561
572
(
2018
).
10.
Selvan
KV
,
Hasan
MN
,
Mohamed Ali
MS
.
Methodological reviews and analyses on the emerging research trends and progresses of thermoelectric generators
.
International journal energy Res
43
(
1
),
113
140
(
2019
).
11.
Dimri
N.
,
Tiwari
A.
,
Tiwari
GN
.
Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance an overall electrical efficiency
.
Sol Energy
166
,
159
170
(
2018
).
12.
Su
H.
,
Qi
H.
,
Liu
P.
,
Li Journal Experimental investigation on heat extraction using a two-phase closed thermosyphon for thermoelectric power generation
.
Energy Sources Recovery Util Environ Eff
40
(
12
),
1485
1490
(
2018
).
13.
Kumar
A.
,
Singh
K.
,
Verma
S.
,
Das
R.
Inverse prediction and optimization analysis of a solar pond powering a thermoelectric generator
.
Solar Energy
,
169
,
658
672
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.