In this work the authors studied changes in taxonomic composition of intestinal microbiome of cattle with inclusion of additional components in a diet. The intestinal microflora was analysed using MiSeq (Illumina, USA) by the method of next generation sequencing (NGS) with the MiSeq reagent kit. With additional introduction of protein component, sunflower cake, into the diet, the dominant phyla also turned out to be Firmicutes (48.2% of the total number of individuals of all species), Bacteroidetes (36.8%), Proteobacteria (12.7%). The inclusion of sunflower cake contributed to a decrease in the number of microbiotas by 23.7% relative to the control (p≤0.05), while the number of representatives of the Ruminococcaceae family relative to the control decreased by 24.1%, while the number of unclassified_Clostridiales in this sample was 19% higher than in the control. Additional introduction of chromium oxide ultrafine particles reduced the number of bacterial sequences relative to the control by 36.9% (p≤0.05). We noted a decrease in the number of the Ruminococcaceae family representatives by 30%, the representative’s number of the families of unclassified Clostridiales, Lachnospiraceae, Bifidobacteriales, on the contrary, increased in experimental group II. The inclusion of ultrafine particles Cr2O3 promoted an increase in the number of Firmicutes by 8.3% relative to the data in group I. The decrease in the α- diversity of the fecal microbiome in the experimental groups also influenced β-diversity, the partial coincidence of the communities in the control and experimental groups, the similarity indices of the Jaccard (IJ) and Sørensen (IS) microbiocenoses were equal to IJ=0.5 and IS=0.67.

1.
J. C.
Plaizier
,
Mesgaran M.
Danesh
,
H.
Derakhshani
,
H.
Golder
,
E.
Khafipour
,
J. L.
Kleen
,
I.
Lean
,
J.
Loor
,
G.
Penner
and
Q.
Zebeli
,
Animal
12
(
s2
)
399
418
(
2018
). doi: .
2.
E.
O’Hara
,
ALA
Neves
,
Y.
Song
and
L. L.
Guan
,
Annu Rev Anim Biosci
15
(
8
)
199
220
(
2020
). doi: .
3.
A.
Al-Qushawi
,
A.
Rassouli
,
F.
Atyabi
,
S. M.
Peighambari
 et al.,
Iran. J. Pharm. Res.
15
(
4
)
663
676
(
2016
).
4.
M. Z.
Troncarelli
,
H. M.
Brandão
,
J. C.
Gern
,
A. S.
Guimarães
 et al.,
Microbial pathogens and strategies for combating them: science, technology and education
1
543
556
(
2013
).
5.
J.
Jampilek
,
J.
Kos
and
K.
Kralova
,
Nanomaterials
9
(
2
)
296
(
2019
).
6.
E. V.
Sheida
,
S. V.
Lebedev
,
S. A.
Miroshnikov
,
V. V.
Grechkina
,
V. A.
Ryazanov
and
O. V.
Shoshina
,
Livestock and forage production
4
(
103
)
26
36
(
2020
).
7.
E. V.
Sheida
,
S. V.
Lebedev
,
S. A.
Miroshnikov
,
V. V.
Grechkina
and
V. A.
Ryazanov
,
Livestock and forage production
4
(
103
)
14
25
(
2020
). DOI: .
8.
D. B.
Holman
and
K. E.
Gzyl
,
FEMS Microbiol Ecol.
95
(
6
)
fiz072
(
2019
). doi: . PMID: 31116403.
9.
J.
Zhang
,
K.
Kobert
,
T.
Flouri
and
A.
Stamatakis
,
Bioinformatics
30
(
5
)
614
620
(
2014
). doi: .
10.
E. E.
Elina
,
Biodiversity: Method. manual for bachelors of the direction of training “Ecology and nature management”
(
Orenburg: Express Printing Printing House
,
2016
).
11.
H.
Thoetkiattikul
,
W.
Mhuantong
,
T.
Laothanachareon
,
S.
Tangphatsornruang
,
V.
Pattarajinda
,
L.
Eurwilaichitr
and
V.
Champreda
,
Curr. Microbiol.
67
130
137
(
2103
)
12.
H.
Golder
,
S.
Denman
,
C.
McSweeney
,
P.
Celi
and
I.
Lean
,
J. Dairy Sci.
97
5131
5150
(
2014
).
13.
M.
Kim
and
J. E.
Wells
,
Curr Microbiol.
72
145
151
(
2016
).
14.
P. J.
Weimer
,
Front Microbiol.
6
296
(
2105
).
15.
P. J.
Turnbaugh
,
M.
Hamady
,
T.
Yatsunenko
 et al.,
Nature
457
480
484
(
2009
).
16.
C.
Matthews
,
F.
Crispie
,
E.
Lewis
,
M.
Reid
,
P. W.
O’Toole
and
P. D.
Cotter
,
Gut Microbes
10
(
2
)
115
132
(
2019
). doi: .
This content is only available via PDF.
You do not currently have access to this content.