The objective of the studies was to evaluate the law of inheritance and phenotypic character formation in unlocking the genetic potential of dairy cows. Scientific experiments were conducted in the Kholmogory cattle raised by breeding plants in Russia. The sampling cattle were 169 cows. For biological trait analysis, the cattle were divided into mother-daughter pairs (n=57); daughters were statistically significantly superior (P<0.05) to their mothers in term of width of loin in pin bones (by 8.2%), rump length (6.2%), hip index (4.4%), fat content of milk and index of productivity - by 0.18% and 5.4%, respectively. The following parameters are characterised with the highest heritability indices: chest depth (53.3%), width of loin in pin bones (42.7%) and body length (30.8%), as well as fat content of milk (22.4%) and index of productivity (21.9%). The lowest heritability indices are the hip length (8.3%) and rump length (8.9%). We selected three servicing Vis Back Ideal bulls with the largest number of daughters. The “father” factor had varying impact on the biological factors and varied from 10.6% to 21.1% for parameters characterising milk-producing ability and from 6.5% to 28.9% for performance.

1.
S. D.
Batanov
,
I. A.
Baranova
and
O. S.
Starostina
,
IOP Conf. Ser.: Earth and Environmental Science
315
(
3
)
032006
(
2019
).
2.
S. D.
Batanov
,
I. A.
Baranova
and
O. S.
Starostina
,
J. Zootechniya
7
2
8
(
2019
).
3.
A.
Konstandoglo
,
V.
Foksha
,
G.
Stratan
and
D.
Stratan
,
Animal Science D
60
35
39
(
2017
).
4.
E. Ya.
Lebedenko
,
International Journal of Applied and Fundamental Research
20
4246
4250
(
2014
).
5.
A. F.
Conte
,
S. N.
Kharitonov
,
A. A.
Sermyagin
,
A. N.
Ermilov
,
I. N.
Yanchukov
and
N. A.
Zinovieva
,
J. of Dairy and Beef Cattle Breeding
8
3
9
(
2017
).
6.
W.
Brade
,
Berichte uber Landwirtschaft
95
3
(
2017
).
7.
G. P.
Babaylova
and
T. I.
Berezina
,
J. Zootechniya
2
15
17
(
2014
).
8.
M.
Kratochvilova
,
Journal of Animal Science
46
(
3
)
139
144
(
2001
).
9.
V. F.
Zubriyanov
,
V. V.
Lyashenko
and
I. M.
Morozov
,
J. Zootechniya
4
4
6
(
2001
).
10.
S. N.
Kharitonov
,
I. N.
Yanchukov
and
A. N.
Ermilov
,
Bulletin of the Thimiryazevskaya Agricultural Academy
4
103
113
(
2011
).
11.
L.
Holloway
,
Environment and Planning D: Society and Space
23
883
902
(
2005
).
12.
Z. J.
Sun
,
C.
Zhang
,
X. F.
Qin
,
Y. A.
Zhang
,
R. D.
Song
and
M.
Sakamoto
,
International Conf. on Artificial Life and Robotics (ICAROB) ed M Sugisaka. Y Jia and et al
(
Japan
:
Alife robotics CO. LTD. Hig Handadai. Oita
,
2019
), p.
241
245
.
13.
C.
Shi
,
J. L.
Zhang
and
G. H.
Teng
,
Computers and electronics in agriculture
156
399
405
(
2019
).
14.
L. W.
Huang
,
S. Q.
Li
,
A. Q.
Zhu
,
X. Y.
Fan
,
C. Y.
Zhang
and
H. Y.
Wang
,
Sensors
S18
3014
(
2018
).
15.
M. B.
Ulimbashev
,
Zh. T.
Alagirova
and
A. S.
Guazova
,
Agricultural Sciences
42
(
2
)
174
177
(
2016
).
16.
H. B.
Lu
,
Y. C.
Wang
and
H.
Bovenhuis
,
J. of Dairy Science
104
(
4
)
4486
4497
(
2021
).
17.
I.
Ivanova
,
I.
Trotsenko
and
O.
Lebedenko
,
Phenotyping of Dairy Cattle in Breeding Programs Int. research conf. on Challenges and Advances in Farming. Food Manufacturing. Agricultural Research and Education (Rostov)
(
Rostov
:
Kne Publishing
,
2021
), p.
215
223
.
18.
G. V.
Rodionov
,
J. Zootechniya
2
23
26
(
1995
).
19.
S. V.
Karamaev
,
A. V.
Korovin
and
L. N.
Bakaeva
,
Bulletin of the Orenburg State Agrarian University
2
(
40
)
137
140
(
2013
).
20.
V. V.
Lyashenko
and
I. V.
Sitnikova
,
Niva Volga region
3
(
28
)
118
123
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.