The deflector plates are two parallel conductive plates that are used to drive the electron beams. A two- dimensional fringe field of deflector plates with two grounded screens is considered. Using the methods of the theory of functions of a complex variable, an analytical expression for the potential of such a system is obtained. It is shown that the presence of grounded screens leads to the localization of the fringe field in the region of the edges of the plates. The obtained expressions for the potentials take into account the influence of the edge fields on each other and make it possible to study the properties of a flat capacitor.

1.
M.
Ogasawara
,
H.
Sunaoshii
and
R.
Yoshikawa
, Development of a Fast Beamblanking System, Part of the 
SPIE Conference on Photomask and X-Ray Mask Technolociy V
(
Kawasaki, Japan
,
1998
) pp.
79
85
.
2.
E.
Mulder
and
P.
Kruit
,
Microelectron. Eng.
41
,
159
162
(
1998
).
3.
V.
Auzelyte
,
M.
Elfman
,
P.
Kristiansson
,
K.
Malmqvist
,
L.
Wallman
,
C.
Nilsson
,
J.
Pallon
,
A.
Shariff
and
M.
Wegdén
,
Nucl. Instrum. Methods Phys. Res.
219
(
B
),
485
489
(
2004
).
4.
J. T. L.
Thong
,
B. C.
Breton
and
W. C.
Nixon
,
J. Vac. Sci. Technol.
8
(
B
),
2048
(
1990
).
5.
D.
Winkler
,
R.
Schmitt
,
M.
Brunner
and
B.
Lischke
,
IBM J. Res. Dev.
34
,
189
203
(
1990
).
6.
D.
Winkler
,
R.
Schmitt
,
M.
Brunner
and
B.
Lischke
,
Scanning
11
,
100
103
(
1989
).
7.
R. J.
Moerland
,
I. G. C.
Weppelman
,
M. W. H.
Garming
,
P.
Kruit
and
J. P.
Hoogenboom
,
Opt. Express
24
,
24760
(
2016
).
8.
I. G. C.
Weppelman
,
R. J.
Moerland
,
J. P.
Hoogenboom
and
P.
Kruit
,
Ultramicroscopy
184
,
8
17
(
2018
).
9.
W.
Verhoeven
,
V. R.
Jfm
,
E. R.
Kieft
,
M.
Pha
and
O. J.
Luiten
,
Ultramicroscopy
188
,
85
89
(
2018
).
10.
S.
Meuret
,
M. Sola
Garcia
,
T.
Coenen
,
E.
Kieft
,
H.
Zeijlemaker
,
M.
Latzel
,
S.
Christiansen
,
S. Y.
Woo
,
Y. H.
Ra
,
Z.
Mi
and
A.
Polman
,
Ultramicroscopy
197
,
28
38
(
2019
).
11.
H.
Wollnik
and
H.
Ewald
,
Nuclear Instruments & Methods
36
,
93
104
(
1965
).
12.
H.
Matsuda
,
H.
Wollnik
,
Nuclear Instruments & Methods
77
,
283
292
(
1970
).
13.
H.
Matsuda
,
Nuclear Instruments & Methods
77
,
40
54
(
1971
).
14.
G. A.
Doskeyev
,
O. A.
Edenova
and
I. F.
Spivak-Lavrov
,
Nucl. Instrum. Methods Phys. Res.
645
(
A
),
163
167
(
2011
).
15.
O. A.
Baisanov
,
G. A.
Doskeyev
,
T. G.
Doskeyev
and
I. F.
Spivak-Lavrov
,
Nucl. Instrum. Methods Phys. Res.
645
(
A
),
159
162
(
2011
).
16.
E. M.
Metodiev
,
K. L.
Huang
,
Y. K.
Semertzidis
and
W. M.
Morse
,
Phys.rev.st Accel.beams
17
, (
2014
).
17.
C. L.
Souto
,
C. G.
Carll
and
J.
Wang
,
J. Electrostat.
94
,
73
79
(
2018
).
18.
I. G. C.
Weppelman
,
R. J.
Moerland
,
L.
Zhang
,
E.
Kieft
,
P.
Kruit
and
J. P.
Hoogenboom
,
Struct Dyn
6
,
024102
(
2019
).
19.
I. F.
Spivak-Lavrov
,
Advances in Imaging and Electron Physics.
193
,
45
128
(
2016
).
20.
I. F.
Spivak-Lavrov
,
D. B.
Zhetkergenov
and
S. U.
Sharipov
,
Vestnik of ARSU
4
(
58
),
27
36
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.