The article deals with the problem of synthesis of the control system of the power unit of a solar space gas turbine power unit. To ensure the uninterrupted operation of the turbine in the shadow region of the orbit, a thermal storage unit is used as an energy source, which prudently stores solar energy in the light region of the orbit. Operation of the turbine is provided by the system "receiver of solar radiation – thermal storage", which forms a single power unit. The problem of structural and parametric identification of its mathematical model is solved. Thermal storage efficiency is justified by maximum possible temperature of working fluid at turbine inlet. The criterion of optimality of choice of operating parameters of power plant is to ensure constancy of thermal storage characteristics at maximum thermodynamic efficiency of the system, which is equivalent to maximization of exergy efficiency of the system. The results of calculations have shown the possibility of using the proposed structural solutions to control the capacity of the power unit.

1.
I.
Kurkin
,
D.
Sevruk
,
D.
Sidorov
,
M.
Kukolev
and
A.
Kotelnikov
, Development of the Infrastructure and Simulation of the Energy Series Assemblies for Solar Space Electric Power Stations. Solar Power Satellites: the Emerging Energy Option, edited by
P.
Glaser
,
F.
Davidson
,
K.
Csigi
et al. (
Ellis Harwood
,
New York
,
1993
), pp.
152
161
.
2.
M.
Conti
and
Ch.
Charach
, “
Thermal Storage for Solar Dynamic Power Generation: Second Law Analysis in Space Application Perspective
”,
Proc. of Fourth European Space Power Conference
(Poitiers,
1995
) pp.
145
150
.
3.
C.
Cougnet
,
B.
Gerber
,
F.
Steinsiek
,
R.
Laine
and
M.
Perren
,
The 10 KW Satellite: a First Operational Step for Space Based Solar Power (ASTRIUM, All the Space You Need, 2010
), p.
10
.
4.
J. S.
Mankins
,
Space Solar Power, the First International Assessment of Space Solar Power: Opportunities, Issues and Potential Pathways Forward
(
International Academy of Astronautics
, Yater,
2011
), p.
272
.
5.
V. A.
Vanke
,
Problems and Methods of Science
4
,
3
(
2008
).
6.
V. K.
Sysoev
,
K. M.
Pichkhadze
,
L. I.
Feldman
,
E. A.
Arapov
and
A. S.
Luzyanin
, Vestnik,
FSUE NPO im.S.A.Lavochkina
2
,
12
19
(
2011
).
7.
G. G.
Raikunov
,
A. A.
Verlan
,
V. M.
Melnikov
,
K. M.
Pichkhadze
,
V. K.
Sysoev
and
B. N.
Harlov
,
Acad. Sci. Energy
4
,
10
(
2012
).
8.
G. T.
Yermoldina
,
B. T.
Suimenbayev
,
V. K.
Sysoev
and
Zh. B.
Suimenbayeva
,
Acta Astronautica
158
,
111
120
, (
2019
).
9.
M. A.
Bashir
,
A. M.
Daabo
,
K. P.
Amber
,
M. S.
Khan
,
A.
Arshad
and
H.
Elahi
,
Applied Thermal Engineering
195
, (
2021
).
10.
J.
Yang
,
G.
Xiao
,
M.
Ghavami
,
J.
Al-Zaili
,
T.
Yang
,
A.
Sayma
and
D.
Ni
,
Journal of Cleaner Production
304
, (
2021
).
11.
K.
Lovegrove
and
A.
Luzzi
, Solar Thermal Power Systems, Encyclopedia of Physical Science and Technology (Third Edition), edited by
Robert A.
Meyers
(
Academic Press
,
2003
), pp.
223
235
.
12.
I.
Ortega-Fernández
,
A. B.
Hernández
,
Y.
Wang
and
D.
Bielsa
,
Energy
217
,
119378
(
2021
).
13.
H.
Zuo
,
Y.
Zhou
,
M.
Wu
,
K.
Zeng
,
Z.
Chang
,
S.
Chen
,
W.
Lu
and
G.
Flamant
,
Renewable Energy
175
,
29
43
(
2021
).
14.
B.
Climent
,
O.
Torroba
,
R.
González-Cinca
,
N.
Ramachandran
and
M. D.
Griffin
,
Acta Astronautica
93
,
352
358
(
2014
).
15.
E. F.
Camacho
and
M.
Berenguel
,
IFAC Proceedings
Volumes
45
(
15
),
848
855
(
2012
).
16.
J. D.
Álvarez
,
J. L.
Guzmán
,
L. J.
Yebra
and
M.
Berenguel
,
Simulation Modelling Practice and Theory
17
(
4
),
664
679
(
2009
).
17.
I. L.
García
,
J. L.
Álvarez
and
D.
Blanco
,
Solar Energy
85
(
10
),
2443
2460
(
2011
).
18.
A.
Mawire
,
M.
McPherson
, and
R.R.J.
van den Heetkamp
,
Solar Energy Materials and Solar Cells
92
(
12
),
1668
1676
(
2008
).
19.
U.
Herrmann
,
B.
Kelly
and
H.
Price
,
Energy
29
(
5–6
),
883
893
(
2004
).
20.
M.
Kukolev
,
Yu.
Kukelev
and
L.
Lutsenko
, “
Calculation of Thermodynamic Efficiency of a Designed Thermal Accumulator Cell Using the Dimensionless Rate of Movement of Phase Transition Boundary
”,
Proceedings of the Second Russian National Conference on Heat Transfer
, vol.
3
(
Moscow Power Engineering Institute Publishing House
,
Moscow
,
1998
), pp.
206
209
.
21.
T. W.
Kerlslake
and
M. B.
Ibrahim
,
Journal of Solar Energy Engineering
115
,
22
31
(
1993
).
22.
M.
Kukolev
,
Yu.
Kukelev
and
L.
Lutsenko
, “
Analytical Equations for the Design of Heat Storage Systems
”,
Proceedings of CSME Forum
, vol.
1
(Toronto,
1998
), pp.
584
588
.
23.
E.
Pitukhin
and
J.
Yanuk
, “
The Design of an Optimal Control Algorithm for the DAMATIC-XD System for Decreasing the use of Energy in Afterflotational Drying of Wood Chips
”,
Abstracts of International Conference: New Information Technology in Pulp and Paper Industry and Energetics
(Petrozavodsk,
1998
), pp.
37
38
.
This content is only available via PDF.
You do not currently have access to this content.