The task is being studied how to control the self-setting and self-organizing cyber-physical systems, which are a part of the industrial object infrastructure. The self-setting is provided with adaptive control technologies using cyber- physical production regulator resources to change the controlling device parameters, which is a part of the physical loop and the control function parameters, which is a part of the cyber-physical system virtual loop. The self-organization is provided also with the central cyber-physical production regulator changing the cyber-physical system inner structure and their external links forming hierarchy and enclosed automatics closed loops, inside of which there is relationships of subordination among the elements for control objects and subjects. The diversity of the cyber-physical systems adaptive control technologies being studied is added with an automatic regulation way using ergative component (the human cognitive abilities) to control the errors fact values. There is a scheme given of the cyber-physical system adaptive control model and the cyber-physical production technical system ergative part control model. The control of self-setting and self- organizing cyber-physical systems is used to prevent conflict situations in the operation of automatic equipment that can provoke the occurrence of man-made accidents and catastrophes.

1.
H.-W.
Kim
,
G.
Yi
,
J. H.
Park
, and
Y.-S.
Jeong
,
Future generation computer systems
105
,
884
893
(
2020
).
2.
M.
Manderscheid
,
G.
Weiss
, and
R.
Knorr
,
Journal of systems architecture
88
,
23
32
(
2018
).
3.
J.
Huang
,
L.
Zhao
, and
Q.-G.
Wang
,
ISA Transactions
107
,
134
142
(
2020
).
4.
A. V.
Gurjanov
,
D. A.
Zakoldaev
,
A. V.
Shukalov
, and
I. O.
Zharinov
,
Journal of physics: conference series 1015
,
5
,
052035
(
2018
).
5.
Z.
Li
, and
J.
Zhao
,
Information sciences
543
,
398
409
(
2021
).
6.
X.
Dai
, and
A.
Burns
,
Journal of systems architecture
103
,
101691
(
2020
).
7.
W.
Wang
,
F.
Di Maio
, and
E.
Zio
,
Nuclear engineering and design
331
,
54
67
(
2018
).
8.
V.
Klös
,
T.
Göthel
, and
S.
Glesner
,
Journal of systems architecture
85-86
,
28
42
(
2018
).
9.
M. A.
Nia
,
M.
Kargahi
, and
F.
Faghih
,
Microprocessors and microsystems
72
,
102943
(
2020
).
10.
L.
Zhao
, and
G.-H.
Yang
,
Fuzzy sets and systems
385
,
20
38
(
2020
).
11.
K.
Zhang
, and
Y.
Shi
,
Automatica
117
,
108974
(
2020
).
12.
J.
Isern
,
F.
Barranco
,
D.
Deniz
,
J.
Lesonen
,
J.
Hannuksela
, and
R. R.
Carrillo
,
Pattern recognition letters
140
,
303
309
(
2020
).
13.
D.
Mourtzis
,
V.
Siatras
,
G.
Synodinos
,
J.
Angelopoulos
, and
N.
Panopoulos
,
Procedia CIRP
93
,
989
994
(
2020
).
14.
A. V.
Gurjanov
,
D. A.
Zakoldaev
,
A. V.
Shukalov
, and
I. O.
Zharinov
,
IOP Conference series: materials science and engineering
327
,
2
,
022111
(
2018
)
15.
L.
Zhao
, and
G.-H.
Yang
,
Information sciences
460-461
,
331
345
(
2018
).
16.
M.
Peruzzini
, and
M.
Pellicciari
,
Advanced engineering informatics
33
,
330
349
(
2017
).
17.
M. S.
Mahmoud
,
N. M.
Alyazidi
, and
M. I.
Abouheaf
,
International journal of electrical power & energy systems
90
,
292
305
(
2017
).
18.
V. A.
Bogatyrev
, and
A. N.
Derkach
,
Computers
9
,
2
,
42
(
2020
).
19.
D.-Y.
Kim
,
S.
Kim
,
H.
Hassan
, and
J. H.
Park
,
Journal of computational science
22
,
171
178
(
2017
).
20.
W. P.
Nguyen
, and
S. Y.
Nof
,
Procedia manufacturing
39
,
429
438
(
2019
).
21.
H.
Park
,
Future generation computer systems
108
,
62
67
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.