Algorithms for the synthesis of gradient controllers in a closed nonlinear control system have been developed. When constructing a stabilizing controller for the problem of synthesizing such systems, the quadratic form of the Lyapunov function was used. The proposed algorithms for the synthesis of the gradient controller provide a stable equilibrium position of the system. The given computational schemes made it possible to effectively solve the problem of synthesizing nonlinear gradient controllers for a wide class of control objects with nonlinearities that satisfy general sector constraints.

1.
A. A.
Krasovskij
,
Spravochnik po teorii avtomaticheskogo upravlenija
(
Nauka
,
Moscow
,
1987
)
712
p.
2.
A. E.
Kononyuk
,
Osnovi teorii optimizatsii. Bezuslovnaya optimizatsiya
(
Osvita UkraYni
,
Kiyev
,
2011
),
544
p.
3.
I. V.
Miroshnik
,
V. O.
Nikiforov
and
A. L.
Fradkov
,
Nelineynoe i adaptivnoe upravlenie slojnimi dinamicheskimi sistemami
(
Nauka
,
SPb
,
2000
).
4.
H. Z.
Igamberdiev
,
O. H.
Boeva
and
J. U.
Sevinov
,
Journal of Advanced Research in Dynamical and Control Systems
12
(
7s
),
2162
2166
(
2020
).
5.
X. Z.
Igamberdiyev
,
J. U.
Sevinov
and
O. O.
Zaripov
,
Regular methods and algorithms for the synthesis of adaptive control systems with customizable models
(
TashGTU
,
Tashkent
,
2014
),
160
p.
6.
J. U.
Sevinov
,
O. O.
Zaripov
and
Sh. O.
Zaripova
,
International Journal of Advanced Science and Technology
29
(
5s
),
1096
1100
(
2020
).
7.
A. R.
Mallaev
,
S. N.
Xusanov
and
J. U.
Sevinov
,
International Journal of Advanced Science and Technology
,
29
(
5s
),
1045
1050
(
2020
).
8.
J. U.
Sevinov
,
A. R.
Mallaev
and
S. N.
Xusanov
, Springer
1323
.
9.
A. R.
Mallayev
,
S. N.
Xusanov
and
J. U.
Sevinov
,
International Journal of Advanced Research in Science, Engineering and Technology
8
(
3
),
16979
16986
(
2021
).
10.
H. Z.
Igamberdiev
and
U. F.
Mamirov
, Springer
1323
, (
2021
).
11.
A. A.
Voronov
,
Stability, manageability, observability
(
Nauka
,
Moscow
,
1979
).
12.
Z.
Chen
and
J.
Huang
,
Springer
2015
,
365
p.
13.
S. A.
Aysagaliyev
,
Stability theory of dynamical systems
(
KazNU
,
Almati
,
2012
),
217
p.
14.
A. R.
Gayduk
,
Automatic control theory
(
Izd-vo TRTU
,
Taganrog
,
2004
).
15.
N. Ye.
Zubov
,
E. A.
Mikrin
and
V. N.
Ryabchenko
,
Matrichniye metodi v teorii i prakticheskiye sistem avtomaticheskogo upravleniya letatelnix apparatov
(
Izdatelstvo MGTU im. N.E. Baumana
,
Moscow
,
2016
),
666
p.
16.
V. V.
Grigoryev
,
N. V.
Juravlyova
,
G. V.
Lukyanova
and
K. A.
Sergeyev
,
Synthesis of automatic control systems by the modal control method
(
SPbGU ITMO
,
S-Pb
,
2007
),
108
p.
17.
Ye. A.
Barbashin
,
Funksii Lyapunova
(
Nauka
,
Moscow
,
1970
).
18.
F. R.
Gantmaxer
,
The theory of matrices
(
Nauka
,
Moscow
,
2010
),
560
p.
19.
A. R.
Gayduk
and
A. A.
Lanskaya
,
Aktualniye problemi proizvodstva i potrebleniya elektroenergii
7
, (
2004
).
20.
H. Z.
Igamberdiev
,
A. N.
Yusupbekov
,
O. O.
Zaripov
and
J. U.
Sevinov
,
Procedia Computer Science
120
,
854
861
(
2017
).
This content is only available via PDF.
You do not currently have access to this content.