The paper presents the results of evaluating the capabilities of methods for analysing electron diffraction patterns of polycrystalline samples obtained from nanosized materials. The advantages and disadvantages of automatic processing of diffraction patterns in the CrysTBox and ProcessDiffraction programs, semi-automatic processing using the ImageJ and DigitalMicrograph programs, as well as manual processing were determined. We investigated the possibility of identifying and indexing electron diffraction patterns obtained by modelling the crystal structure (zinc oxide, brookite) in the Electron Diffraction program, as well as using transmission electron microscopy (copper-containing nanoparticles). The possibilities of recognizing diffraction rings using the indicated methods are estimated. The accuracy of measuring interplanar distances and indexing reflections has been established. The possibilities of determining the correspondence of the crystal structure to a substance are considered. The drawbacks of setting the display of analysis results, which affect the possibility of their publication, are noted. Recommendations are given for further research in the framework of this topic.

1.
C.
Dwyer
,
C.
Maunders
,
C. L.
Zheng
,
M.
Weyland
,
P. C.
Tiemeijer
, and
J.
Etheridge
,
Appl. Phys. Lett.
100
,
191915
(
2012
).
2.
S.S.
Ray
, “Structure and Morphology Characterization Techniques” in
Clay-Containing Polymer Nanocomposites
, edited by
S. S.
Ray
(
Elsevier
;
Amsterdam
,
2013
), pp.
39
66
.
3.
M. A.
Asadabad
and
M. J.
Esandari
, “Electron Diffraction” in
Modern Electron Microscopy in Physical and Life Sciences
, edited by
R.
Kral
and
M.
Janecek
(
IntechOpen
,
Rijeka
,
2016
), pp.
3
25
.
4.
C. H.
Wu
,
W. T.
Reynolds
 Jr.
, and
M.
Murayama
,
Ultramicroscopy
112
,
10
14
(
2012
).
5.
Y.
Yang
,
C.
Cai
,
J.
Lin
,
L.
Gong
, and
Q.
Yang
,
Micron
96
,
9
15
(
2017
).
6.
Y.
Meng
and
J.M.
Zuo
,
EPJ Applied Physics
,
80
,
10701
(
2017
).
7.
G. Yu.
Ostaeva
,
I. Yu.
Isaeva
,
I. V.
Morenko
,
E. A.
Eliseeva
, and
A. A.
Litmanovich
,
Polymer Sci. Ser. B
61
,
254
(
2019
).
8.
J.P.
Morniroli
,
Electron Diffraction, Software to Simulate Electron Diffraction Patterns
,
USTL & ENSCL
,
Lille, France
, see http://www.electron-diffraction.fr/software_022.htm.
9.
M. I.
Aroyo
,
J. M.
Perez-Mato
,
C.
Capillas
,
E.
Kroumova
,
S.
Ivantchev
,
G.
Madariaga
,
A.
Kirov
, and
H.
Wondratschek
,
Zeitschrift fuer Kristallographie - Crystalline Materials
221
,
15
27
(
2006
).
10.
M. I.
Aroyo
,
A.
Kirov
,
C.
Capillas
,
J. M.
Perez-Mato
, and
H.
Wondratschek
,
Acta Cryst. A
62
,
115
128
(
2006
).
11.
J.
Lábár
,
M.
Adamik
,
B.
Barna
,
Z.
Czigány
,
Z.
Fogarassy
,
Z.
Horváth
, and
T.
Szüts
,
Microscopy and Microanalysis
18
,
406
420
(
2012
).
12.
M.
Klinger
,
J. Appl. Crystallogr.
50
,
1226
1234
(
2017
).
13.
S. D.
Gates-Rector
and
T. N.
Blanton
,
Powder Diffr.
34
,
352
360
(
2019
).
14.
S.
Gražulis
,
A.
Daškevic
,
A.
Merkys
,
D.
Chateigner
,
L.
Lutterotti
,
M.
Quirós
,
N. R.
Serebryanaya
,
P.
Moeck
,
R. T.
Downs
, and
A.
LeBail
,
Nucleic Acids Res.
40
,
D420
D427
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.